Proving Haskell’s
Type Class Resolution Coherent

Gert-Jan Bottu, Ningning Xie,

Koar Marntirosian, Tom Schrijvers
KU LEUVEN

\V

Type checking

A

—)

h

\V

Type checking

A

\V

Type checking Optimization

A

\V

Type checking Optimization

A

=
\V/

Type checking Optimization

A

=
\V/

Type checking

Optimization

A

=
\V/

Type checking

Optimization

A

\V

Type checking

Optimization

11

A

\V}

Type checking

—)

Execution

Optimization

12

:: (Show a , Read a) => String -> String
s = show (read s)

13

:: (Show a , Read a) => String -> String
s = show (read s)

:: Show a => a -> String

14

:: (Show a , Read a) => String -> String
s = show (read s)

:: Show a => a -> String

> show 42
ll42 1]

15

:: (Show a , Read a) => String -> String
s = show (read s)

:: Show a => a -> String

> show 42
ll42 1]

Read a => String -> a

16

:: (Show a , Read a) => String -> String
s = show (read s)
:: Show a => a -> String
> show 42
ll42 1]

Read a => String -> a

> (read "42") + 1
43 17

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

18

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

> foo "1"

19

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

S read s

> foo "1"

20

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

S read s

"”" 1 (Int)

> foo "1"

21

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

S read s

"”" 1 (Int)

> foo "1" =) 1.0 (Float)

22

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

S read s

"”" 1 (Int)

> foo "1" =) 1.0 (Float)

\ True (Bool)

23

I
v

:: (Show a , Read a) => String -> String
s = show (read s)

S read s show (read s)

"”" 1 (Int)

> foo "1" =) 1.0 (Float)

\ True (Bool)

24

I
v

:: (Show a , Read a) => String -> String
s = show (read s)

S read s show (read s)

"”" 1 (Int)) 1"

> foo "1" =) 1.0 (Float)

\ True (Bool)

25

I
v

:: (Show a , Read a) => String -> String
s = show (read s)

S read s show (read s)

"”" 1 (Int)) 1"

> foo "1" mmsm) 1.0 (Float) =) "1.0"

\ True (Bool)

26

I
v

:: (Show a , Read a) => String -> String
s = show (read s)

S read s show (read s)

"”" 1 (Int)) 1"

> foo "1" mmsm) 1.0 (Float) =) "1.0"

\ True (Bool)) "True"

27

- H l89 v ; ‘14(:‘ ,;_ig

":_" ‘LE 98 ﬂ" Y/

L _SCARBOROUGH 23 HARROGAT} J |

V. | lANl l.lrn-.._}f ORK |7

Y
/2] J'

Coherence for
qualified types

Mark P. Jones

Coherence for qualified types

Mark P.

Jones”

All translations are equal, but some translations are more equal than others.

Misquoted, with apologies to George Orwell, from Translation Farm, 1945,

Research Report YALEU/DCS/RR-989, September 1993

Abstract

The meaning of programs in a language with implicit over
loading can be described by translating them into a second
language that makes the use of overloading explicit. A sin-
gle program may have many distinct translations and it is
important to show that any two transhtions are semanti-
cally equivalent to ensure that the meaning of the original
program is well-defined. This property is commonly known
as coherence

This paper deals with an implicitly typed language that in-
cludes support for parametric polymorphism and overload
ing based on a system of qualified types. Typical applications
include Haskell type classes, extensible records and subtyp-
ing. In the general case, it is possible to find examples for
which the coherence property does not hold. Extending the
development of a type inference algorithm for this language
to include the calculation of translations, we give a simple
syntactic condition on the principal type scheme of a term
that is sufficient to guarantee coherence for a large class of
programs.

One of the most interesting aspects of this work is the use of
terms in the target language to provide a semantic interpre
tation for the ordering relation between types that is used
to establish the existence of principal types.

On a practical level, our results explain the importance of
unambiguous type schemes in Haskell,

Introduction

Consider the task of evaluating an expression of the form
z+y+z Depending on the way that it is parsed, this
expression might be treated as either (z-+y)+z or z+(y+2
Fortunately, it does not matter which of these we choose
since the fact that (+) is associative is both necessary and
sufficient to guarantee that they are actually equivalent. We
are therefore free to choose whichever is more convenient
retaining the same well-defined semantics in either case
This paper deals with a similar problem that occurs with
programs in OML, a simple implicitly typed language with

o syale.edu.
e & oot iim DARDA oot i o HOD1S

overloading The meaning of such programs can be de-
«:le by translating them into OP, an extended language
w uses additional constructs to make the use of over
Joading explicit, However, diferent typing desivaticns for &
given OML program can lead to distinct translations and
just as in the example above, it is important to show that
any two translations have the same meaning. In the termi-
nology of [2], we need to show that ‘the meaning of a term
does not depend on the that it was type checked’, a
property that they refer to as coherence
The type system of OML is an extended form of the ML
type system that includes support for qualified types [7]
The central idea is to allow the use of type expressions of
the form 7 = 6 40 e all those instances of o which
y vdicate on types. Applications of qualified
(\|n\ unl\ul« Haskell type classes, extensible records and
subtyping
In previous work, we have described how the standard type
inference algorithm for ML can be extended to calculate
principal type schemes for terms in OML. In this paper, we
extend these results to show how an arbitrary translation of
an OML term can be written in terms of a particular princi
pal translation determined by the type inference algorithm
Exploiting this relationship, we give conditions that can be
used to guarantee that all of the translations for a given
term are equivalent
The remaining sections of this paper are as follows. Section 1
outlines the use of qualified types and defines the languages
OML and OP and the translation between them that is used
in this paper. A simple example in Section 2 shows that a
single term may have semantically distinct translations and
ence that we cannot hope to establish a general coherence
result for arbitrary terms. Instead, we must look for condi-
tions which can be used to ensure coherence for as wide a
class of programs as possible
As a first step, we need to specify exactly what it means
for two translations to be equivalent. This is dealt with
in Section 3 using a syntactic definition of (typed) equality
between OP terms.
One of the most important tools in the development ﬂy a
type inference algorithm is the ordering relation (<)
tween type schemes. Indeed, without a notion of ordering
it would not even be passible to talk about principal or most
general type schemes! Motivated by this, Section
semantic interpretation for (<) using OP terms whi
call conversions.

Sections 5 and 6 extend the development of type inference

:: (Show a , Read a) => String -> String
s = show (read s)

30

I
v

:: (Show a , Read a) => String -> String

s = show (read s)

31

S

(

a ,
show (read

32

<

Type classes!

pat

<

Type classes!

alh |

No type classes?

35

<

Type classes!

alh |

No type classes?
Dictionaries!

36

NORTH NORTH stukii. SLRRL Iy (S V
AMERICA AMERICA

class a where
(==) :: a -> a ->

class a where

(==) :: a -> a ->
inst where

class a where
(==) :: a -> a ->

inst where

class a where
(==) :: a -> a ->

class a where
(==) :: a -> a ->

class a where
(==) :: a -> a ->

class a where
(==) :: a -> a ->

EgDict (a -> a -> Bool)

class a where
(==) :: a -> a ->

class a where
(==) :: a -> a ->

class a where
(==) :: a -> a ->

a -> a -> Bool

class a where

(==) 1@ ->a - EgDict (a -> a -> Bool)

(==) :: h—>

a -> a -> Bool

(==) d

class a where
(==) :: a -> a ->

a -> a -> Bool

(==) (EgDict e) =

class a where
(==) :: a -> a ->

a -> a -> Bool

(==) (EgDict e) = e

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

eqDBool ::

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

eqDBool :: E

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

eqDBool :: E

eqDBool =

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

eqDBool :: E

eqDBool = EgDict

inst where

a -> a -> Bool

_ (==) (EgDict e) = e

eqDBool :: E

egqDBool = EgDict (...)

inst where

eqDBool ::

egqDBool = EgDict (...)

a -> a -> Bool

(==) (EgDict e) = e

a -> a -> Bool

(==) (EgDict e) = e

foo =

a -> a -> Bool

(==) (EgDict e) = e

foo = \d :

a -> a -> Bool

(==) (EgDict e) = e

foo=\d:h.

a -> a -> Bool

(==) (EgDict e) = e

foo=\d:h.

\X : a.

a -> a -> Bool

(==) (EgDict e) = e

foo=\d:h.

\X : a.

a -> a -> Bool

(==) (EgDict e) = e

a -> a -> Bool

(==) (EgDict e) = e

foo

class a => a where
(>) 2 a ->a ->

class a = a where
(>) :: a ->a ->

inst where

\4
I

class

(>)

inst

d
d

-> d

->

a where

where

class a => a where
(>) 2 a ->a ->

class a => a where
(>) 2 a ->a ->

class a => a where N = OrdDict
(>) 2 a ->a ->

class a => a where
(>) 2 a ->a ->

class a => a where = OrdDict k

(a -> a -> Bool)

(>) 2 a ->a ->

class a => a where = OrdDict k

(>) :ta->a-> (a -> a -> Bool)

(>)

class a => a where = OrdDict k

(>) :ta->a-> (a -> a -> Bool)

(>) :: a -> a -> Bool

class a => a where = OrdDict k

(>) :ta->a-> (a -> a -> Bool)

(>) :: Em ->

a -> a -> Bool

class a => a where = OrdDict k

(>) :ta->a-> (a -> a -> Bool)

->

a -> a -> Bool

(>) d =

class

(>)

a =>

e d =-> ad ->

a where

= OrdDict k

(a -> a -> Bool)

(>) ::—>

a -> a -> Bool

(>) (OrdDict d g) =

class a => a where = OrdDict k

(>) :ta->a-> (a -> a -> Bool)

(>) ::—>

a -> a -> Bool

(>) (OrdDict d g) = g

= OrdDict k

(a -> a -> Bool)

inst where

= OrdDict k

(a -> a -> Bool)

inst where ordDBool ::

inst

= OrdDict k

(a -> a -> Bool)

where ordDBool ::

ordDBool =

inst

= OrdDict k

(a -> a -> Bool)

ordDBool ::

ordDBool =
OrdDict

inst

= OrdDict k

(a -> a -> Bool)

ordDBool ::

ordDBool =
OrdDict egDBool

= OrdDict k

(a -> a -> Bool)

inst where ordDBool ::

ordDBool =

OrdDict egDBool (...)

= OrdDict k

(a -> a -> Bool)

inst where ordDBool ::

ordDBool =

OrdDict egDBool (...)

= OrdDict k

(a -> a -> Bool)

= OrdDict k

(a -> a -> Bool)

= OrdDict k

(a -> a -> Bool)

= OrdDict k

(a -> a -> Bool)

= OrdDict k

(a -> a -> Bool)

= OrdDict k

(a -> a -> Bool)

qE

a -> a -> Bool

(==) (EgDict e) = e

foo = \do : X

= OrdDict k

(a -> a -> Bool)

qE

a -> a -> Bool

(==) (EgDict e) = e

foo = \do : X

= OrdDict k

(a -> a -> Bool)

qE

a -> a -> Bool

(==) (EgDict e) = e

foo = \do : X
\X : a .

(==) de x X

= OrdDict k

(a -> a -> Bool)

qE

a -> a -> Bool

(==) (EgDict e) = e

= OrdDict k

(a -Jpa -> ?iiiy'“
::.Ih.—>

a -> a -> Bool

(==) (EgDict e) = e

= OrdDict k

(a -Jpa -> ?iiiy'“
::.Ih.—>

a -> a -> Bool

(==) (EqDict e) = e

= OrdDict k

(a -> a -> Bool)

qE

a -> a -> Bool

(==) (EgDict e) = e

instance a where
) =

instance a where
) =

instance a where
—_— >_ =
instance where
>

>

instance a where
—_— >_ =
instance where
>

>

instance a where
) =

instance where
> —

instance where

instance a where
) =

instance where
> —

instance where

instance
B >
instance
>

B >
instance
>

>

>

where

instance
B >
instance
>

B >
instance
>

>

>

where

instance
B >
instance
>

B >
instance
>

>

>

where

instance
B >
instance
>

B >
instance
>

>

>

where

instance
B >
instance
>

B >
instance
>

>

>

where

foo

(>) d True True

instance
B >
instance
>

B >
instance
>

>

>

where

instance a where
—_— >_ =
instance where
> =
— >_ =
instance W
> -
> =

>

foo = (>) d True True

class a where
a ->

class a where
a ->

class a => a

class a where
a ->

class a => a
class a => a

class a where

a ->
class a => a
class a => a
(a, a)

=> a ->

X base X

class a where
a ->

class a where
a ->

class a where
a ->

BaseDict

class a where

a -2 BaseDict (a -> Bool)

class a where

a -2 BaseDict (a -> Bool)

base

class a where

a -2 BaseDict (a -> Bool)

base :: k—> a -> Bool

class a where

a -2 BaseDict (a -> Bool)

base :: k—> a -> Bool

base d =

class a where

a -2 BaseDict (a -> Bool)

base :: k—> a -> Bool

base (BaseDict b) =

class a where

roa -> BaseDict (a -> Bool)

base :: k-> a -> Bool

base (BaseDict b) = b

class a
class a => a

class a => a
class a => a

BaseDict (a -> Bool)

class a
class a => a

BaseDict (a -> Bool)

class a
class a => a

BaseDict (a -> Bool)

class a => a .
== Sub2Dict k

class

BaseDict (a -> Bool)

= SublDict k
B- scomice B

=> a ->
base X

X

BaseDict (a -> Bool)

= SublDict k
B- scomice B

BaseDict (a -> Bool)

= SublDict k
B- scomice B

foo = \d1l :.

BaseDict (a -> Bool)

= SublDict k
B- scomice B

foo = \d1l :.

(a,
=> a ->
base X

BaseDict (a -> Bool)

= SublDict k
B- scomice B

foo = \d1l :.

\X

BaseDict (a -> Bool)

= SublDict k
B- scomice B

foo = \d1l :.

base ::

foo

k -> a -> Bool

= SublDict k
B- scomice B

=\d1:.

(a,
=> a ->
base X

base ::

foo

k -> a -> Bool

= SublDict k
B- scomice B

= \dl : EHI.
\d2 : IHH.

\X : a.
base d

(a,
=> a ->
base X

base ::

foo

k -> a -> Bool

= SublDict k
B- scomice B

= \dl : EHI.
\d2 : IHH.

\X : a.
base d x

base :: k -> a -> Bool

= SublDict k
B- scomice B

foo = \dl : 8.

(a,
=> a ->
base X

base ::

foo

-> a -> Bool

= SublDict k
== SubZDir‘t k

= \Sub1Dict d1 : .

\Sub2Dict d2 : E
\ X :‘ f

base d x

base :: k -> a -> Bool

— Sub1Dict k
' B [

\Sub1lDict dl1 : .

\Sub2Dict d2 : M

\X

base d X 145

o

‘K

148

CN
<

B
\/
‘K

152

153

A -

CN
<

‘i
\/

N 4

h

X4

.

e S
\/
‘K

T Sk

e S
\/
‘K

T Sk

e S

by S
s,

i S
s,

A -

CN
<

‘i
\/

N 4

and

21 ! y

h

15 y

!
A

JF
) I y

hal

bl
h

N 4

and

21 ! y

AN

1

N 4

and

21 ! y

VD
RN

=
Iy

Y

169

=
I'r

=
I"

Pointer Implem.

) E True True

- Q)

(==) E True True

(==) E True True

3

(==) E True True

3

(==) E True True

0.

(\x : Bool. \y : Bool.
True ,True -> True
False,False -> True

-> False)

—_) —

True True

Pointer

o Eq Bool : ...

Implem.

(==) E True True

$

(\x : Bool. \y : Bool.
True ,True -> True
False,False -> True

-> False)

—_) —

True True

Pointer Implem.

% $

(\x : . \y . case x,y of |GUEHE-Tolol RN AR Tolo} N
, -> True ,True -> True
s -> False,False -> True
_ 5 ->) _ 5 -> False)
True True

(==) E True True

N 4

and

21 ! y

AN

1

inst Eg
True
False

Bool where
== True =
== False

True
True
False

188

inst Eg Bool where

True == True = True
False == False = True
—= = False

Eqg Bool => Bool -> Bool
b = b == False

189

inst Eg Bool where

True == True = True
False == False = True
—= = False

Eqg Bool => Bool -> Bool
b = b == False

190

inst Eg Bool where

True == True = True
False == False = True
—— = False

not :: Eq Bool => Bool -> Bool
not b = b == False

191

inst Eg Bool where

True == True True Iﬁl
False == False = True

—= = False

Eqg Bool => Bool -> Bool
b = b == False

192

inst Eq Bool where
True == True = True ﬂ
False == False = True

- == = False /\/Qs)\/\

Eqg Bool => Bool -> Bool
b = b == False

193

inst Eg Bool where
True == True = True o
False == False = True

—= = False

Eqg Bool => Bool -> Bool
b = b == False

194

inst Eg Bool where
True == True = True ‘:’
False == False = True

—= = False

Eqg Bool => Bool -> Bool
b = b == False

Pointer

Implem.

"

Eq Bool : ...

195

inst Eq Bool where
True == True = True o
False == False = True

—= = False

Eqg Bool => Bool -> Bool
b = b == False

Pointer

Implem.

"

Eq Bool : ...

196

N 4

and

21 ! y

ol
CHIENE

i=3F

and

A

21 ! y

A
—) -
Mi /oﬁi

JF
) I y

1,

A
- -
Mid o F

A

L ' : 201
: Image by Arkarti from DeviantArt

202

From the rule premise:

M (STl =0) @l roy) M (193)
D P T} 194)
Fesl” by o w0y 195)

The goal to be proven is the following:
ST by let 310y = ¢yin M[e]: 07w let x: 0y = ey in M'[e]

From the induction hypothesis and Equation 193, it follows that:

BiEetl, X2 0y by M'[e] 107 s M'[e] (196)
The goal follows from Tx-LEr, in combination with Equations 194, 195 and 196.

o
Theorem 18 (Strong Normalization).
FETciobme o thenJ:Tre—" v
Proof. By Theorem 19 and 20, with R*" = o, %% = o, 3" o
Lemma 35 (Well Typedness from Strong Normalization).
e € SNITILY. then S:lcio vy e RV ()
Proof. The goal is baked into the relation. It follows by simple induction on . o
Lemma 36 (Strong ization preserved by reduction).

Suppose £31c10 by ¢ 1RV (@), and £ + ¢y — 3, then
o Ifer e SNIOT. then ez € SNITT -
o Ifex € SNIOT . then ey € SNIOI

Proof. Part1 By induction on .

)1 € SNlBooll s £

ATk —y

© by €1 2 Bool

By Preservation (Theorem 8), we know that X:1'cie k,, ¢ : Bool. Because the evaluation process is
deterministic, given X + ¢; —* v, we have X k e =" 1.

o) € SN £ Si0cs 0 by ey 1 RSy (a)

Av e R ya)

Similar to Bool case.

@ €SNIoy =l 28T 0 by e 1R sy = 2)

Shey—'y

¢ €SNI = o1’ e SNBSS

By Preservation (Theorem 8). we know that X ® by
process is deterministic, given X ¢, —* 1. we have ¥

R¥¥y(ery = 2). Because the evaluation
2 =" v. Givenany ¢ : ¢ € SN[¢ . we
know that .+ ¢ — 2,50 £+ ¢ ¢’ — e3¢, By induction hypothesis, we get ¢3¢’ € SN[zl

63

204

From the rule premise:

M (e P= o) e (X0

Loy =) w M (193)
BT by ey L0y ey (194)
Feil g o1 w0 (195)

The goal to be proven is the following:

ST by let 310y = ¢yin M[e]: 07w let x: 0y = ey in M'[e]

From the induction hypothesis and Equation 193, it follows that:

b ML) 07w M[e] (196)

The goal follows from uations 194, 195 and 196.
Theorem 18 (Strong Norm.
LT o b et o then 3
Proof. By Theorem 19 and 20, 5001
Lemma 35 (Well Typedness from ¢

c€ SNITI. then Sl cio by ¢

Proof. The goal is baked into the relatior

Lemma 36 (Strong Normalization presery.
Suppose £:1c:0 by ¢ 1RV (o), and S v

o Ifer € SNITTL, then ez e SNIC

o Ifexe SNICI, then ey € SN/
Proof. Part1 By induction on

1 € SNBoo/s
(Boa] 1

By Preservation (Theore..
deterministic, given X + ¢

oy € SNl) 2RS¥ (a)

Similar to Bool case.

@ €SNIy - Dl = et RN\ (0) =)

Adv:

Srep—" v
AV 1 € SNIIGT = e’ € SNIo2ls

By Preservation (Theorem 8). we know that X
process is deferministi

b 2 ¢ RS,y — or2). Because the evaluation
tic, given L + ¢; —* v, we have X + ¢; —* v. Givenany ¢ : ¢’ € SN[H”];T\'\’_WC
know that .+ ¢ — 2,50 £+ ¢ ¢’ — e3¢, By induction hypothesis, we get ¢3¢’ € SN[zl

63

205

References

Icons made by DinosoftLabs, Freepik, Pixel perfect, Smashicons & Vectors Market
from www.flaticon.com

Logical relations example edited from Types and Programming Languages, B. Pierce,
MIT Press, 2002

207

http://www.flaticon.com

