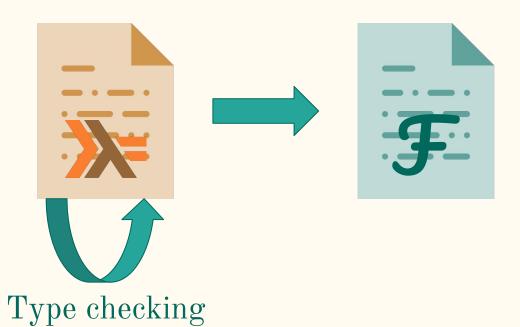
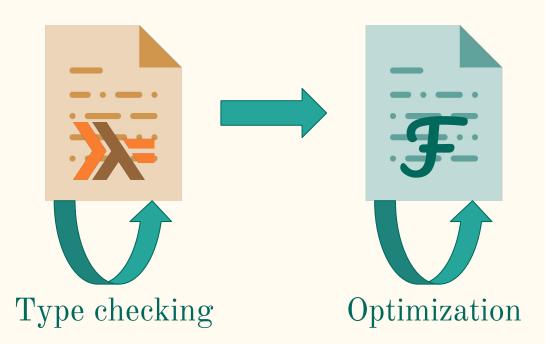
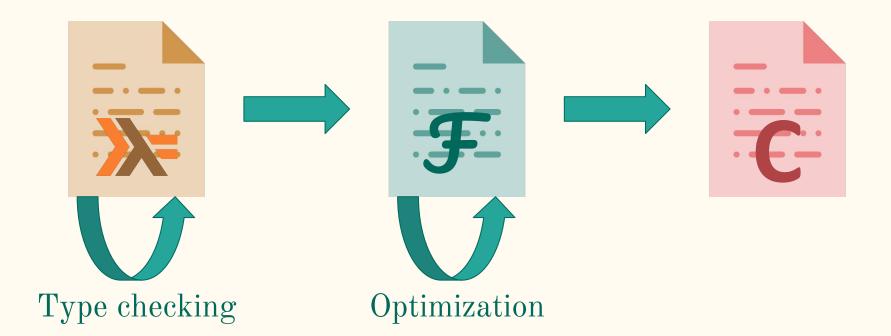
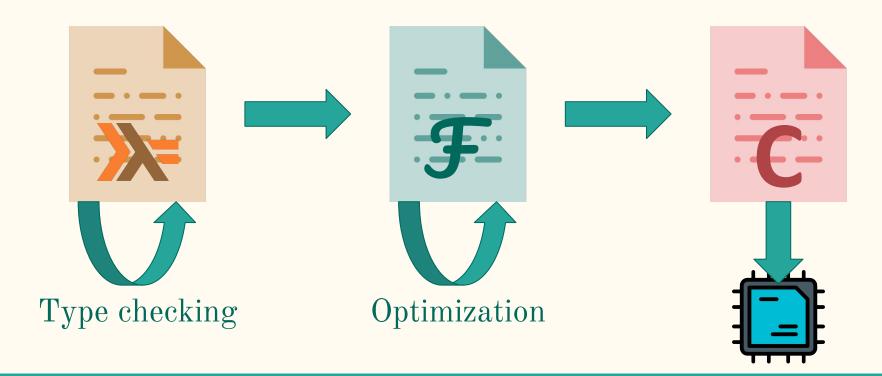
Proving Haskell's Type Class Resolution Coherent

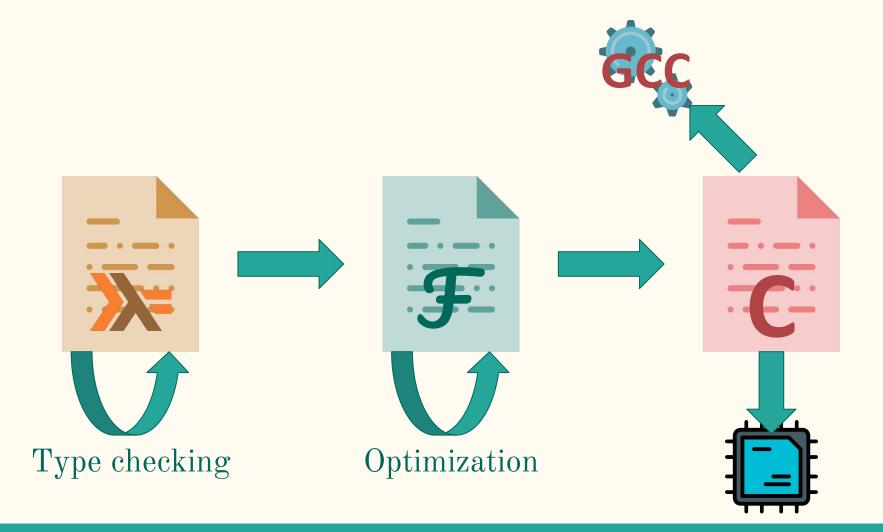
Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, Tom Schrijvers

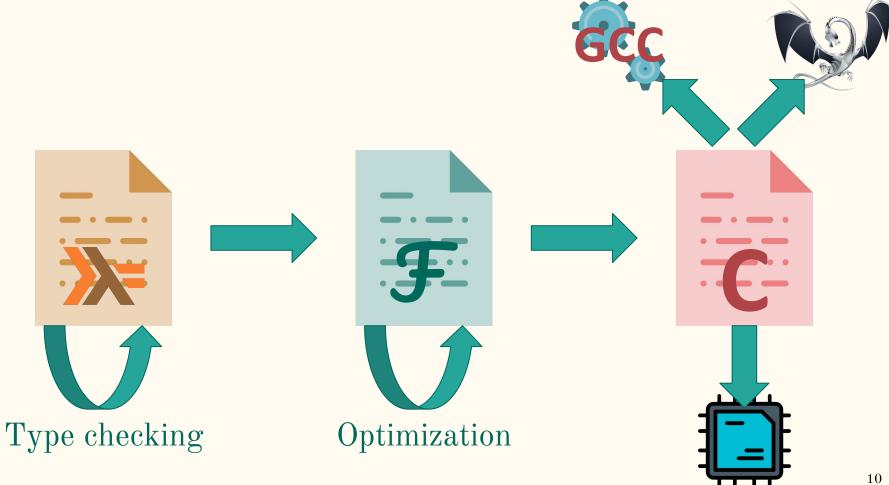


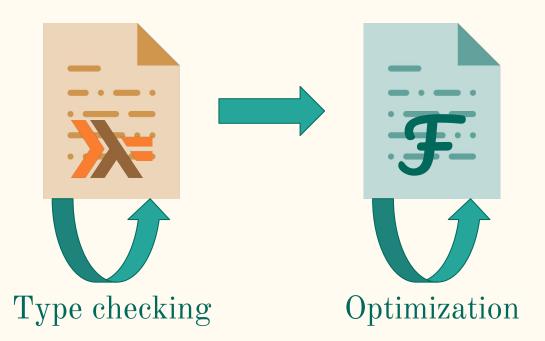


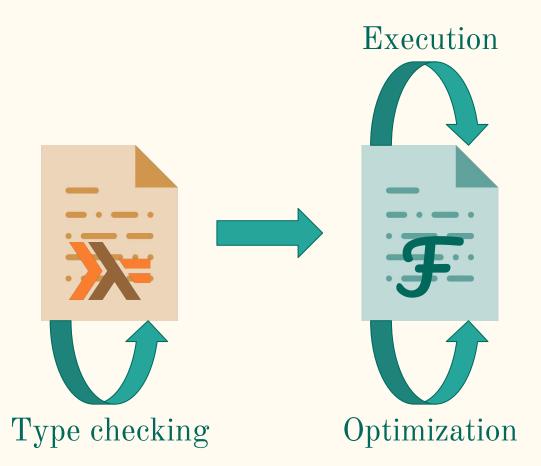












```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
show :: Show a => a -> String
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
show :: Show a => a -> String
> show 42
"42"
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
show :: Show a => a -> String
  > show 42
  "42"
read :: Read a => String -> a
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
show :: Show a => a -> String
  > show 42
  "42"
read :: Read a => String -> a
  > (read "42") + 1
  43
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
```

```
foo :: (Show a , Read a) => String -> String foo s = show (read s)
```

> foo "1"

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)

read s
```

> foo "1"

20

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                       read s
       S
                    1 (Int)
> foo "1"
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                       read s
       S
                    1 (Int)
> foo "1"
                    1.0 (Float)
```

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                       read s
       S
                    1 (Int)
> foo "1"
                    1.0 (Float)
                    True (Bool)
```

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                       read s
                                         show (read s)
       S
                     1 (Int)
> foo "1"
                    1.0 (Float)
                     True (Bool)
                                                     24
```

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                       read s
                                         show (read s)
                    1 (Int)
> foo "1"
                    1.0 (Float)
                    True (Bool)
                                                     25
```

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                     read s
                                      show (read s)
                   1 (Int)
> foo "1"
                  1.0 (Float) "1.0"
                   True (Bool)
```

```
a = ?
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
                     read s
                                    show (read s)
                  1 (Int)
> foo "1"
                  1.0 (Float) "1.0"
                  True (Bool) "True"
                                               27
```


Coherence for qualified types

Mark P. Jones

Coherence for qualified types

Mark P. Jones*

All translations are equal, but some translations are more equal than others.

Misquoted, with apologies to George Orwell, from Translation Farm, 1945.

Research Report YALEU/DCS/RR-989. September 1993

Abstract

The meaning of programs in a language with implicit overloading can be described by translating them into a second language that makes the use of overloading explicit. A sinage program may have many distinct translations and it is important to show that any two translations are semantically equivalent to ensure that the meaning of the original program is well-defined. This property is commonly known as otherence.

This paper deals with an implicitly typed language that includes support for parametric polymorphism and overdending based on a system of qualified types. Typical applications include Haskell type classes, exterisible records and substyping. In the general case, it is possible to find examples for which the coherence property does not hold. Extending the development of a type inference algorithm for this hispange to include the calculation of translations, see give a simple to include the calculation of translations, see give a simple that is sufficient to guarantee coherence for a large class of programs.

One of the most interesting aspects of this work is the use of terms in the target language to provide a semantic interpretation for the ordering relation between types that is used to establish the existence of principal types.

On a practical level, our results explain the importance of unambiguous type schemes in Haskell.

Introduction

Consider the task of evaluating an expression of the form x+y+x. Depending on the way that it is parsed, this expression might be treated as either (x+y)+z or x+(y+z). Fortunately, it does not matter which of these we choose since the fact that (+) is associative is both necessary and sufficient to guarantee that they are actually equivalent. We are therefore free to choose whichever is more convenient retaining the same well-defined semantics in either case.

This paper deals with a similar problem that occurs with programs in OML, a simple implicitly typed language with

"This paper summarizes work carried out while the author was a member of the Programming Research Group, Oxford, supported by a SERC studentship [8]. Current address: Yale University, Department of Computer Science, P.O. Box 2028-58, New Hawen, Connecticut 05/20-8258, USA. Electronic mail pone-markfex yale celt. and the control of the Computer Science of the Compu

overloading. The meaning of such programs can be described by translating them into OP, an extended language which uses additional constructs to make the use of overgene OML program can lead to distinct translations and, just as in the example above, it is important to show that any two translations have the same meaning, in the terminology of [2], we need to show that the meaning of a term property that they refer to as otherway by the cheeded; a property that they refer to as otherway.

The type system of OML is an extended form of the ML type system that includes support for qualified types [7]. The central idea is to allow the use of type expressions of the form $\pi \Rightarrow \sigma$ to represent all those instances of σ which satisfy π , a prefainte on types. Applications of qualified types include Haskell type classes, extensible records and subtyping.

In previous work, we have described how the standard typic inference algorithm for ML can be extended to calculate principal type schemes for terms in OML. In this paper, we extend these results to show how an arbitrary translation of an OML term can be written in terms of a particular principal translation determined by the type inference algorithm. Exploiting this relationship, we give conditions that can be the condition of the condition of the condition of a given term are convision.

The remaining sections of this paper are as follows. Section 1 outlines the use of qualified types and defines the languages OML and OP and the translation between them that is used in this paper. A simple example in Section 2 shows that a single term may have semantically distinct translations and the single term may have semantically distinct translations and appeared the user cannot hope to residuable a general otherwise. The contraction of th

As a first step, we need to specify exactly what it means for two translations to be equivalent. This is dealt with in Section 3 using a syntactic definition of (typed) equality between OP terms.

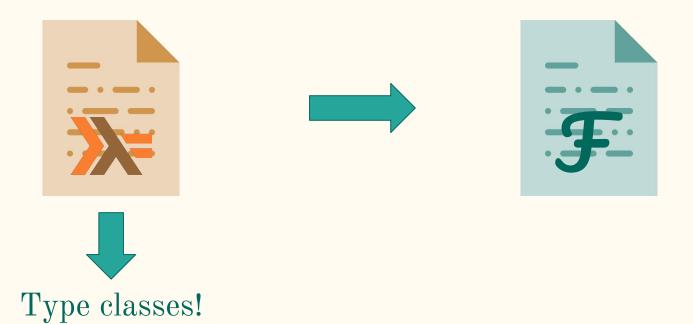
One of the most important tools in the development of a type inference algorithm is the ordering relation (\leq) between type schemes. Indeed, without a notion of ordering, it would not even be possible to talk about principal or most general type schemes! Motivated by this, Section 4 gives a semantic interpretation for (\leq) using OP terms which we call conversions.

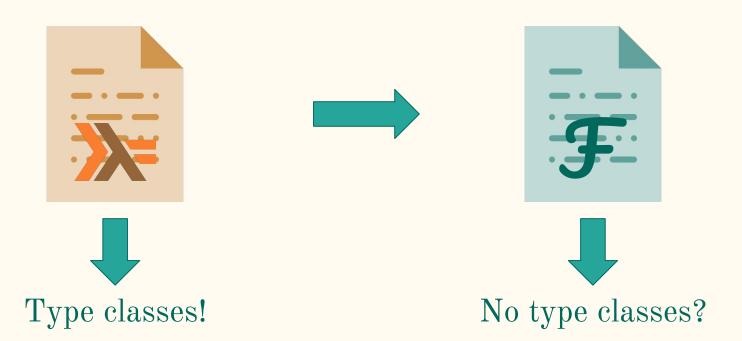
Sections 5 and 6 extend the development of type inference

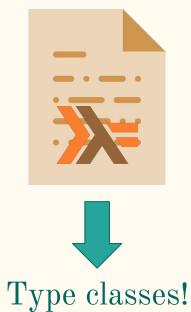
```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
```

```
foo :: (Show a , Read a) => String -> String
foo s = show (read s)
```

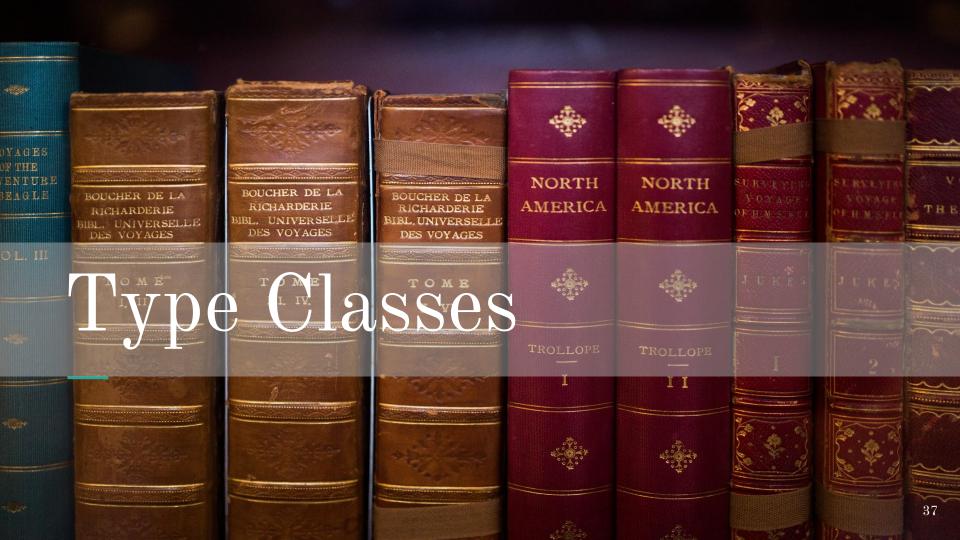
foo :: (Show a , Read a) => String -> String foo s = show (read s)







No type classes? Dictionaries!



class Eq a where (==) :: a -> a -> Bool

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == = False
```

```
class Eq a where
  (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
       == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
class Eq a where
  (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
class Eq a where
  (==) :: a -> a -> Bool
```

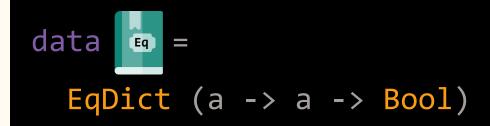
```
inst Eq Bool where
  True == True = True
  False == False = True
   _ == _ = False
```



```
class Eq a where
  (==) :: a -> a -> Bool
```



```
class Eq a where
  (==) :: a -> a -> Bool
```



```
class Eq a where
  (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == _ = False
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == _ = False
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == _ = False
```

foo :: Eq a => a -> Bool
foo
$$x = x == x$$

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
```

```
class Eq a where
  (==) :: a -> a -> Bool
```

foo :: Eq a => a -> Bool
foo
$$x = x == x$$

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
```

```
class Eq a where
  (==) :: a -> a -> Bool
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) =
```

```
class Eq a where
  (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
       == _ = False
foo :: Eq a => a -> Bool
foo X = X == X
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) = e
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
               = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
       Eq
        a -> a -> Bool
(==) (EqDict e) = e
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
       == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
eqDBool ::
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
       == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
eqDBool ::
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
      == = False
```

```
data
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
eqDBool ::
eqDBool =
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
      == = False
foo :: Eq a => a -> Bool
```

foo x = x == x

```
data Eq
  EqDict (a -> a -> Bool)
(==) :: Eq ->
        a -> a -> Bool
(==) (EqDict e) = e
eqDBool :: Eq. Bool
eqDBool = EqDict
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
  False == False = True
     == = False
foo :: Eq a => a -> Bool
```

foo x = x == x

```
data 👨
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
eqDBool :: Eq. Bool
eqDBool = EqDict (...)
```

```
class Eq a where
  (==) :: a -> a -> Bool
```

inst Eq Bool where

```
data 👣
  EqDict (a -> a -> Bool)
(==) : Eq
        a -> a -> Bool
(==) (EqDiet e) = e
eqDBool :: Eq. Bool
eqDBool = EqDict (...)
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) = e
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) = e
foo =
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) = e
foo = \d:
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
        a -> a -> Bool
(==) (EqDict e) = e
foo = \d:
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
        Eq
        a -> a -> Bool
(==) (EqDict e) = e
foo = \backslash d:
       \x: a.
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
(==) :: Eq
         a -> a -> Bool
(==) (EqDict e) = e
foo = \backslash d:
       \x : a.
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
foo = \backslash d:
       \x: a.
       (==) d
```

```
class Eq a where
 (==) :: a -> a -> Bool
inst Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False
foo :: Eq a => a -> Bool
foo x = x == x
```

```
data 👨
  EqDict (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
foo = \d: Eq
      \x: a.
      (==) d x x
```


class Eq a => Ord a where
 (>) :: a -> a -> Bool

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord =
```

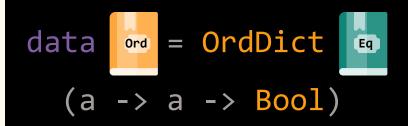
```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict Eq
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```



```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
foo :: Ord a => a -> Bool
foo x = x == x
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict Eq
  (a -> a -> Bool)

(>) :: a -> a -> Bool
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict
   (a \rightarrow a \rightarrow Bool)
         0rd ->
         a -> a -> Bool
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
foo :: Ord a => a -> Bool
foo x = x == x
```

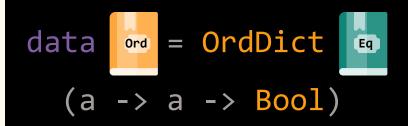
```
data ord = OrdDict
  (a \rightarrow a \rightarrow Bool)
         0rd ->
         a -> a -> Bool
(>) (OrdDict d g) =
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict
  (a - > a - > Bool)
       Ord ->
       a -> a -> Bool
(>) (OrdDict d g) = g
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

inst Ord Bool where
 True > False = True



```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict Eq
(a -> a -> Bool)
```

ordDBool :: Ord Bool

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict Eq
  (a -> a -> Bool)

ordDBool :: Ord
Bool
ordDBool =
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict Eq
  (a -> a -> Bool)

ordDBool :: Ord
Bool
ordDBool =
```

OrdDict

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
data ord = OrdDict Eq

(a -> a -> Bool)
```

ordDBool :: Ord
Bool

OrdDict eqDBool

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

```
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  \overline{(a-)} a -> Bool)
ordDBool ::
ordDBool =
  OrdDict eqDBool (...)
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

inst Ord Bool where

```
data ord = OrdDict
  (a \rightarrow a \rightarrow Bool)
ordDBool ::
ordDBool =
  OrdDict eqDBool (...)
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```



```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

inst Ord Bool where

inst Ord Bool where

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

inst Ord Bool where
 True > False = True

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
```

inst Ord Bool where True > False = True

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a -> a -> Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
foo = \do : ord
      \x: a.
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a -> a -> Bool)
(==) :: Eq ->
        a -> a -> Bool
(==) (EqDict e) = e
foo = \do : ord
      \x: a.
      (==) de
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a -> a -> Bool)
(==) :: Eq ->
        a -> a -> Bool
(==) (EqDict e) = e
foo = \do : ord
      \x: a.
      (==) de x x
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a -> a -> Bool)
(==) :: Eq ->
        a -> a -> Bool
(==) (EqDict e) = e
foo = \do : ord
      \x : .
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a - \ a - \ Bool)
(==) :: Eq
        a -> a -> Bool
(==) (EqDict e) = e
foo = \do : ord
      \x : —
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
       a -> Bool)
     Eq
        a -> a -> Bool
(==) (EaDict e) = e
foo = \do : ord
      \x : —
```

```
class Eq a => Ord a where
  (>) :: a -> a -> Bool
inst Ord Bool where
 True > False = True
 _ > _ = False
foo :: Ord a => a -> Bool
foo x = x == x
```

```
data ord = OrdDict
  (a -> a -> Bool)
(==) :: Eq ->
        a -> a -> Bool
(==) (EqDict e) <u>=</u> e
foo = \OrdDict de o :
       \x : ....
```



```
instance Ord a where
```

instance Ord Bool where


```
instance Ord a where
```

_ > _ = False

instance Ord Bool where

True > False = True

_ > _ = False

instance Ord a where

_ > _ = False

instance Ord Bool where

True > False = True

_ > _ = False

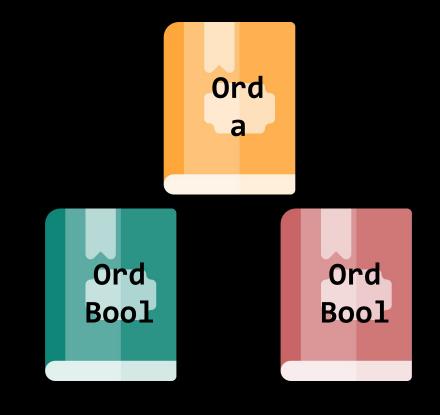
instance Ord Bool where

True > True = True

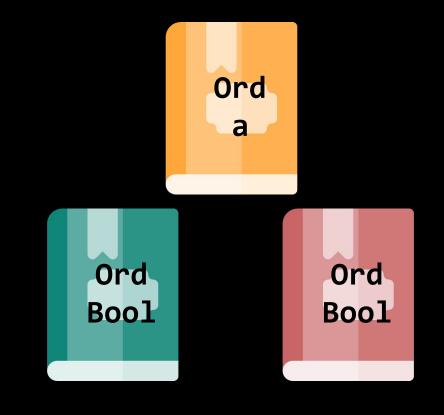
True > False = True

_ > _ = False

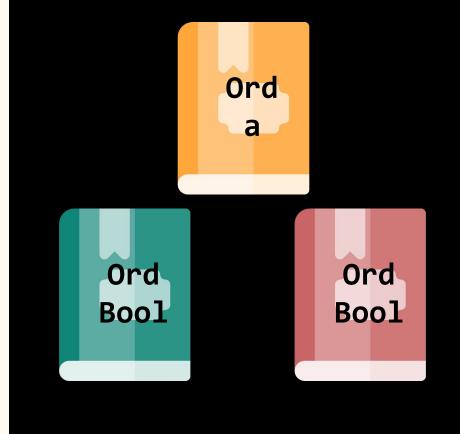

```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
      > = False
instance Ord Bool where
 True > True = True
 True > False = True
           = False
```



```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
  > = False
instance Ord Bool where
 True > True = True
 True > False = True
      > = False
foo :: Bool
foo = True > True
```

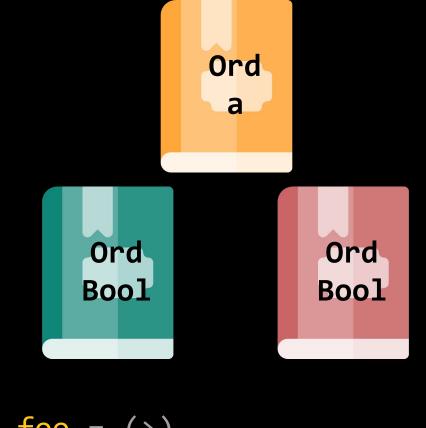


```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
  > = False
instance Ord Bool where
 True > True = True
 True > False = True
      > = False
foo :: Bool
foo = True > True
```



foo =

```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
  > = False
instance Ord Bool where
 True > True = True
 True > False = True
      > = False
foo :: Bool
foo = True > True
```



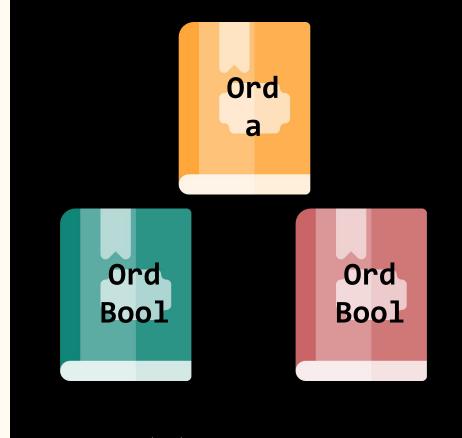
$$foo = (>)$$

```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
 _ > _ = False
instance Ord Bool where
 True > True = True
 True > False = True
      > = False
foo :: Bool
foo = True > True
```



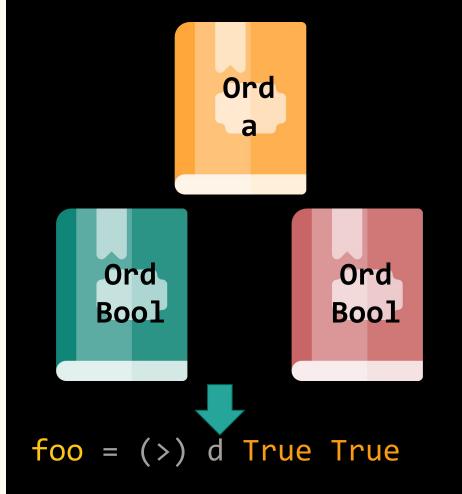
$$foo = (>) d$$

```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
 _ > _ = False
instance Ord Bool where
 True > True = True
 True > False = True
 _ > = False
foo :: Bool
foo = True > True
```



foo = (>) d True True

```
instance Ord a where
 _ > _ = False
instance Ord Bool where
 True > False = True
 _ > = False
instance Ord Bool where
 True > True = True
 True > False = True
   > = False
foo :: Bool
foo = True > True
```



```
instance Ord a where
                                    Ord
 _ > _ = False
instance Ord Bool where
 True > False = True
   > _ = False
instance Ord Bool wh
                                           Ord
                                           Bool
 True > True = Tr
 True > False = T
           = False
foo :: Bool
                          foo = (>) d True True
foo = True > True
```


class Base a where

base :: a -> Bool

class Base a where
base :: a -> Bool

class Base a => Sub1 a

```
class Base a where
base :: a -> Bool
```

class Base a => Sub1 a
class Base a => Sub2 a

```
class Base a where
  base :: a -> Bool
class Base a => Sub1 a
class Base a => Sub2 a
foo :: (Sub1 a, Sub2 a)
       => a -> Bool
foo x = base x
```

```
class Base a where
  base :: a -> Bool
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```



```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```



```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
BaseDict (a -> Bool)
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
BaseDict (a -> Bool)
```

base ::

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =

BaseDict (a -> Bool)
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
   BaseDict (a -> Bool)

base :: Base -> a -> Bool
base d =
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data
Base
BaseDict (a -> Bool)

base :: Base -> a -> Bool
base (BaseDict b) =
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =

BaseDict (a -> Bool)
```

```
class Base a where
  base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
BaseDict (a -> Bool)
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
   BaseDict (a -> Bool)

data Sub1 =
```

```
class Base a where
  base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
   BaseDict (a -> Bool)

data Sub1 = Sub1Dict
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data Base =
   BaseDict (a -> Bool)

data Sub1 = Sub1Dict Base
```

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data
  BaseDict (a -> Bool)
     Sub1 = Sub1Dict
data
     sub2 = Sub2Dict
data
```

```
class Base a where
  base :: a -> Bool
class Base a => Sub1 a
class Base a => Sub2 a
foo :: (Sub1 a, Sub2 a)
       => a -> Bool
```

foo x = base x

```
data
  BaseDict (a -> Bool)
     Sub1 = Sub1Dict
data
     sub2 = Sub2Dict
data
```

```
class Base a where
  base :: a -> Bool
class Base a => Sub1 a
class Base a => Sub2 a
foo :: (Sub1 a, Sub2 a)
       => a -> Bool
```

foo x = base x

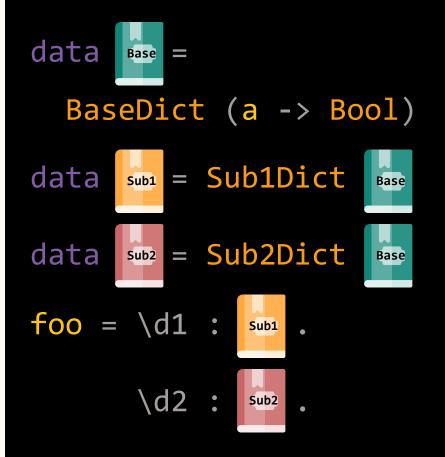
```
data
  BaseDict (a -> Bool)
     Sub1 = Sub1Dict
data
     sub2 = Sub2Dict
data
foo =
```

```
class Base a where
  base :: a -> Bool
class Base a => Sub1 a
class Base a => Sub2 a
foo :: (Sub1 a, Sub2 a)
       => a -> Bool
foo x = base x
```

```
data
  BaseDict (a -> Bool)
data Sub1 = Sub1Dict
     sub2 = Sub2Dict
data
foo = \d1:
             Sub1
```

```
class Base a where
  base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```



```
class Base a where
  base :: a -> Bool
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data
  BaseDict (a -> Bool)
data Sub1 = Sub1Dict
     sub2 = Sub2Dict
data
foo = \d1 :
      \d2 :
             Sub2
      \x: a.
```

```
class Base a where
  base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

```
data
  BaseDict (a -> Bool)
data Sub1 = Sub1Dict
     sub2 = Sub2Dict
data
foo = \d1 :
      \d2 :
             Sub2
      \x: a.
      base
```

base

```
class Base a where
base :: a -> Bool
```

```
class Base a => Sub1 a
class Base a => Sub2 a
```

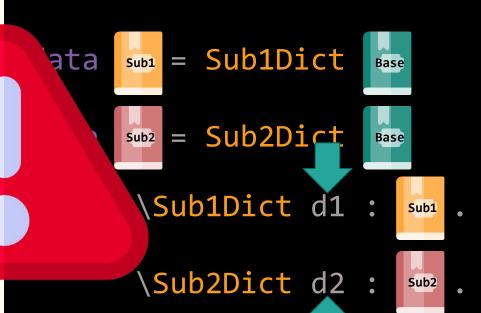
```
-> a -> Bool
base :: Base
     Sub1 = Sub1Dict
data
     sub2 = Sub2Dict
data
foo = \Sub1Dict d1
      \Sub2Dict d2:
      \x :
      base d
```

```
class Base a where
  base :: a -> Bool
```

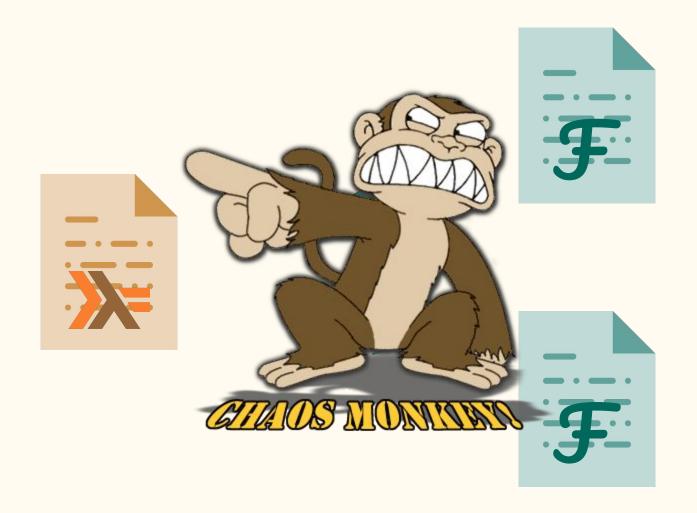
class Base a => Sub1 a
class Base a => Sub2 a

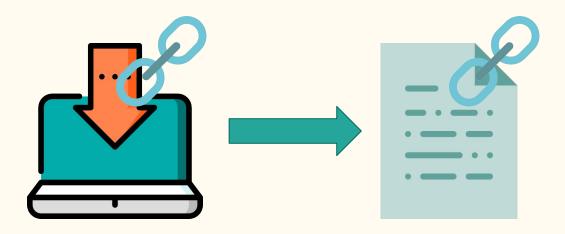
foo :: (Sub1 a, Sub => a -> Bod

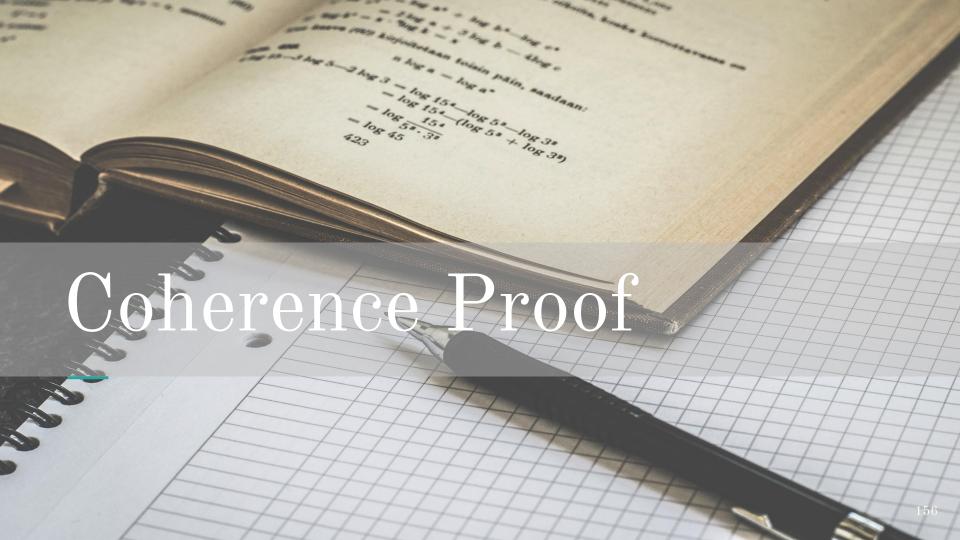
foo x = base x

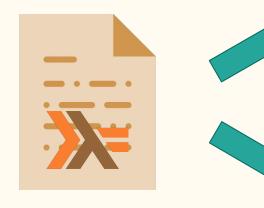


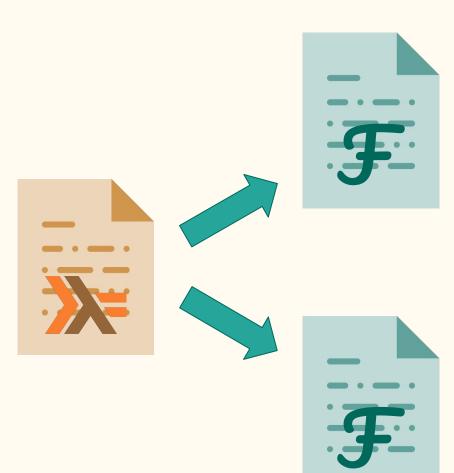
\x : base d x

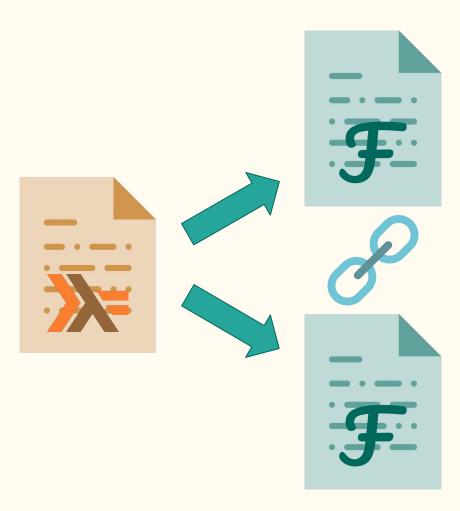


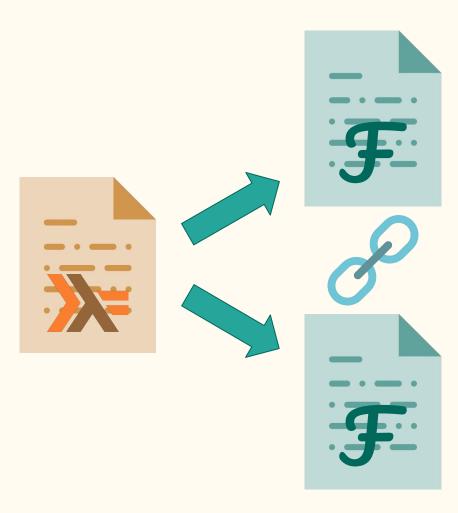


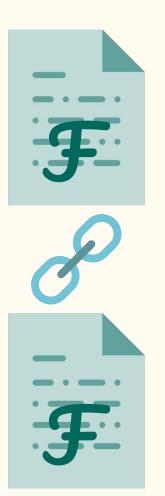


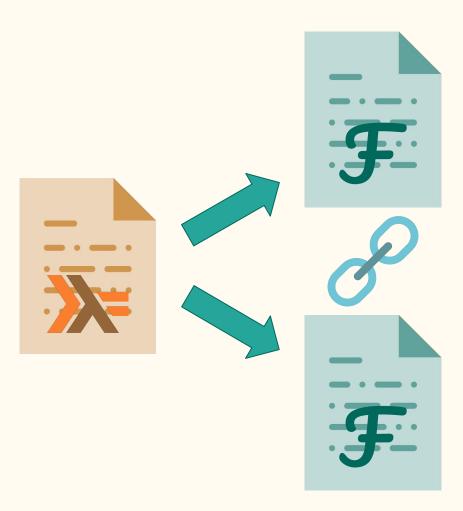


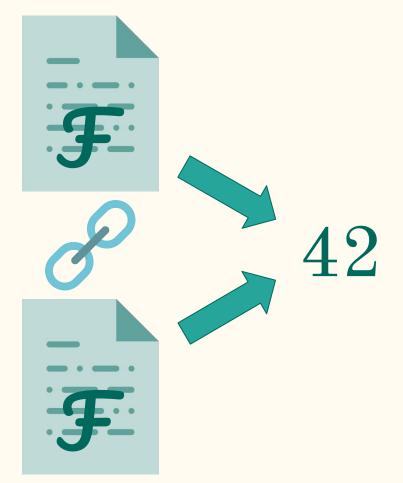


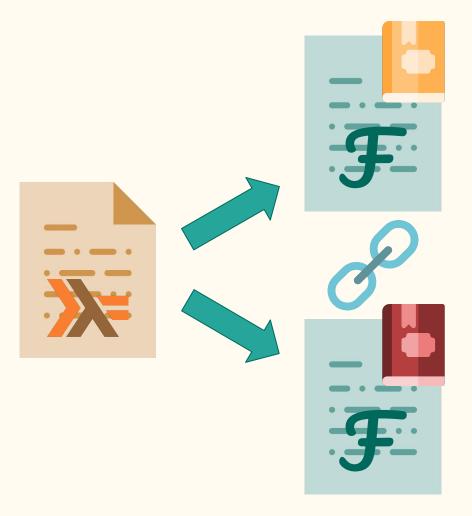


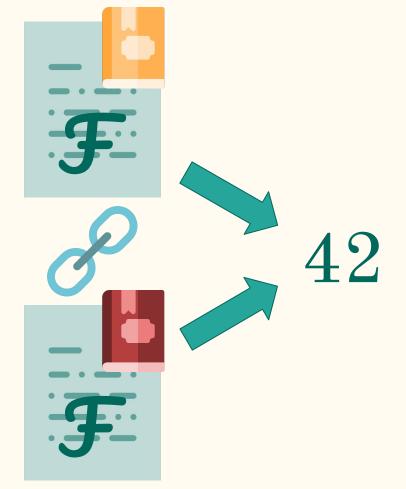


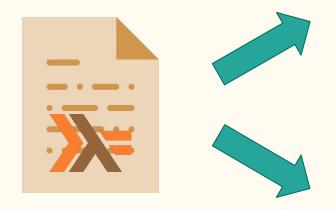


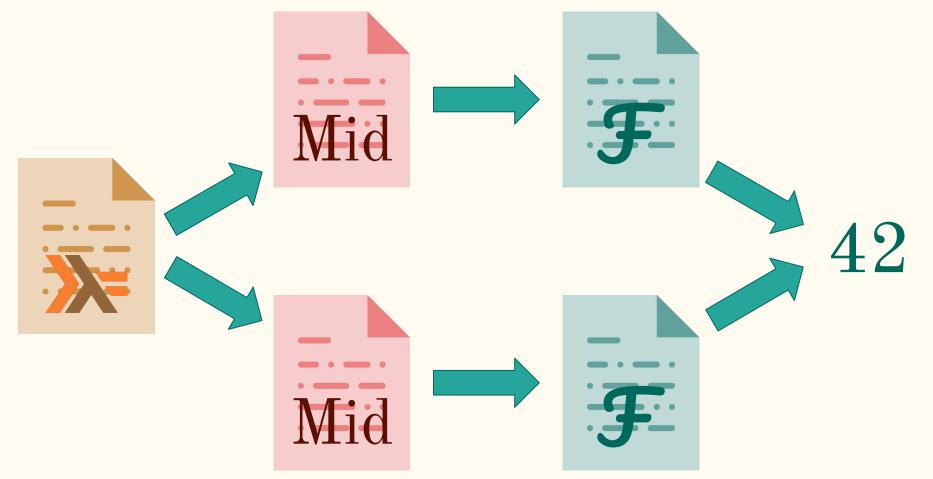


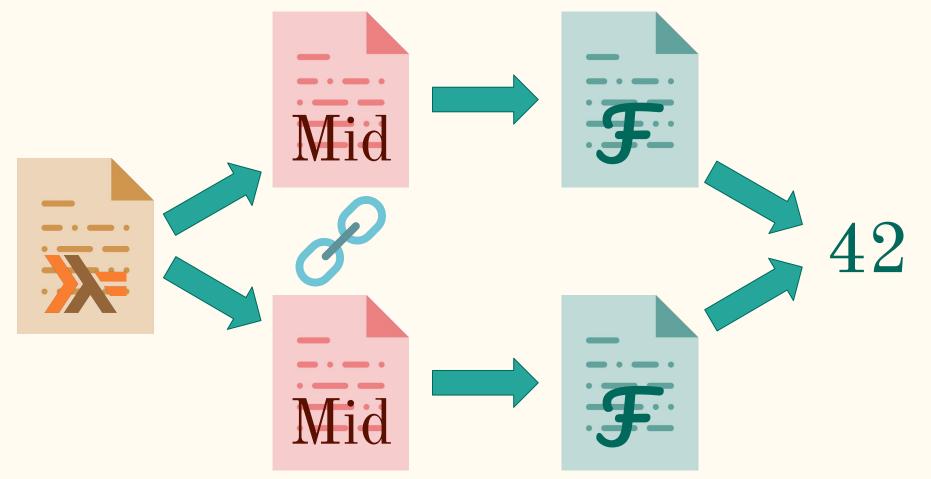


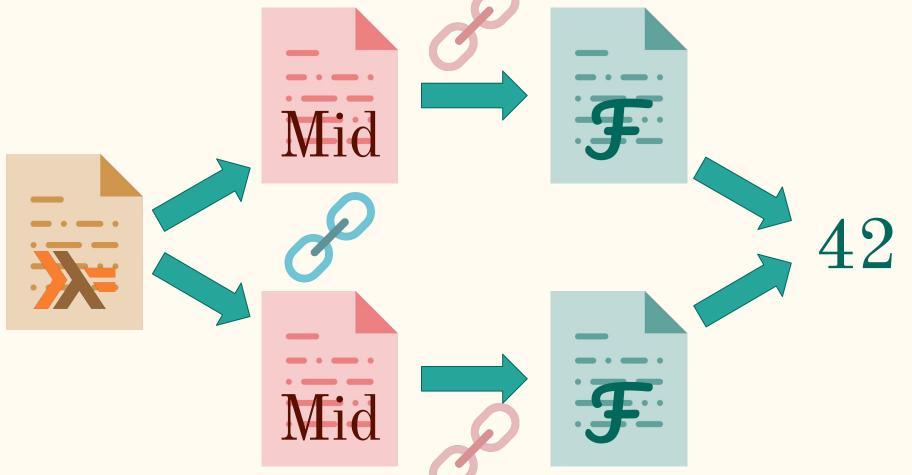


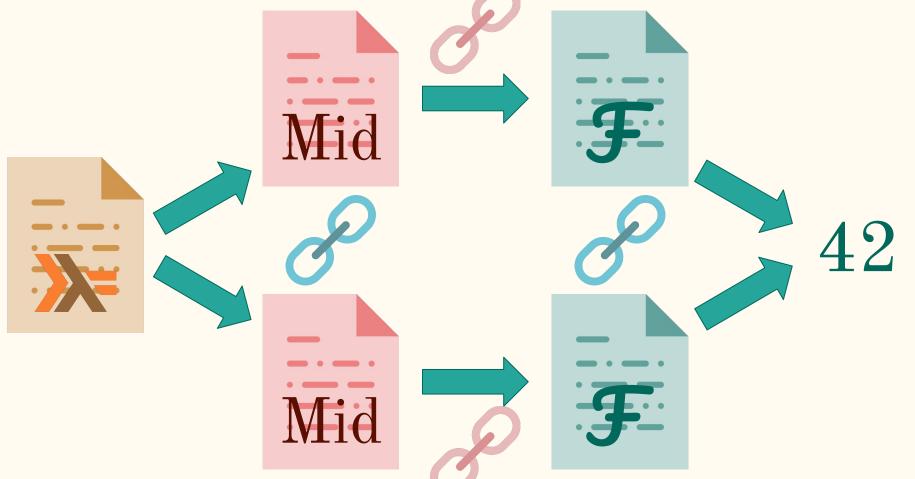


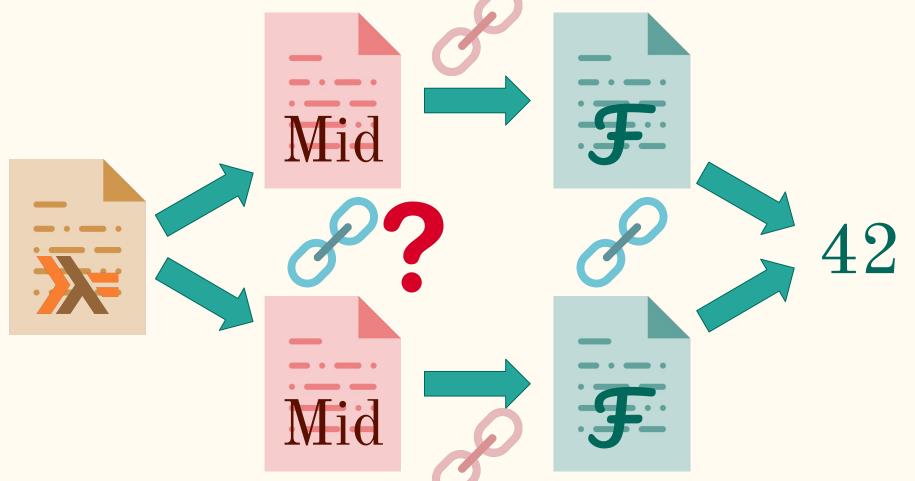


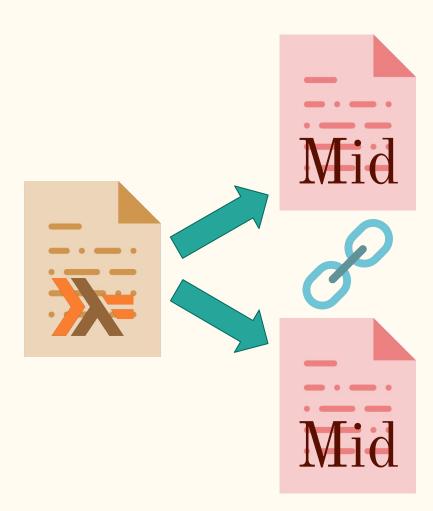


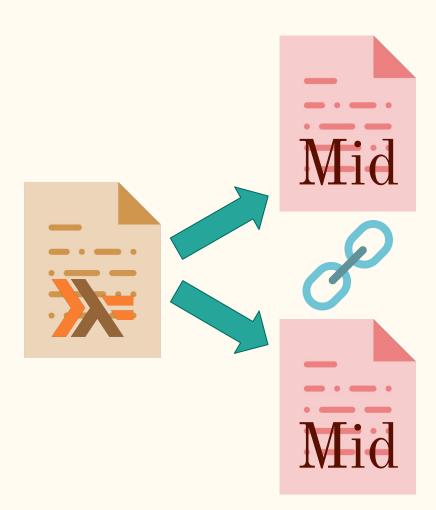




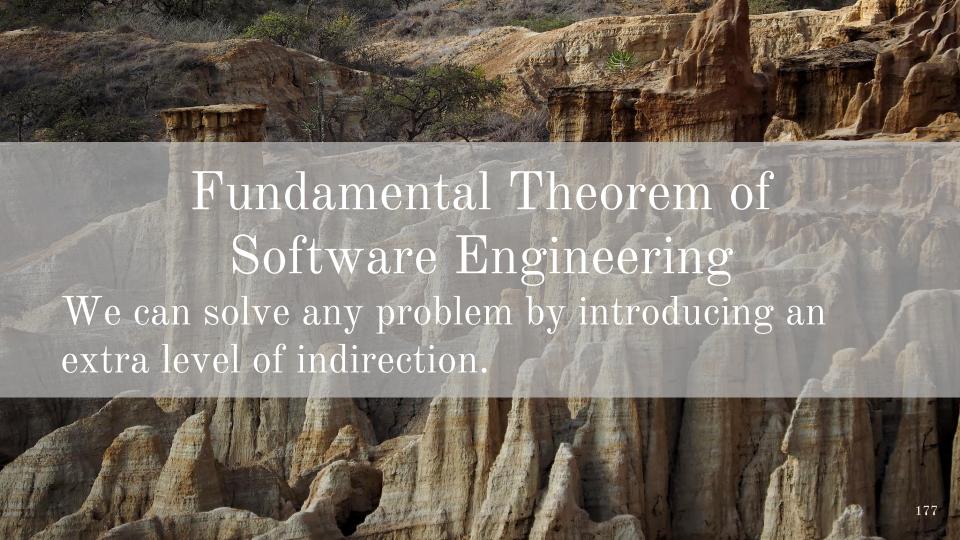


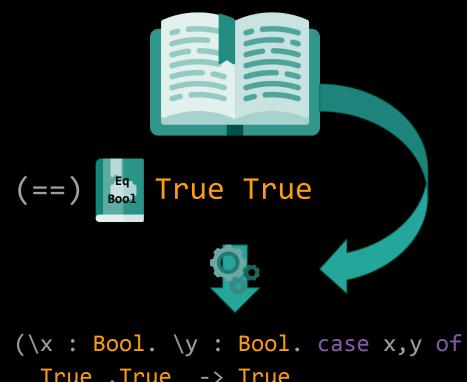


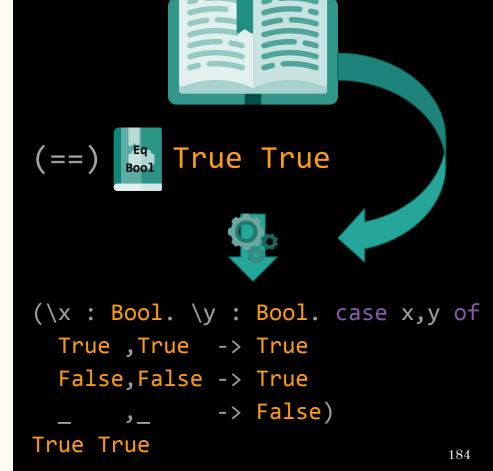


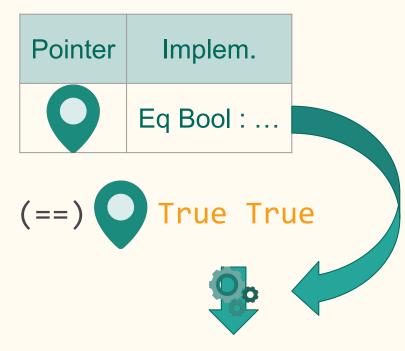


Pointer	Implem.
0	
0	•••
0	

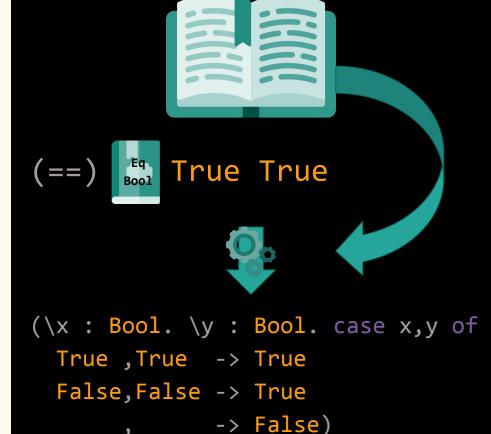








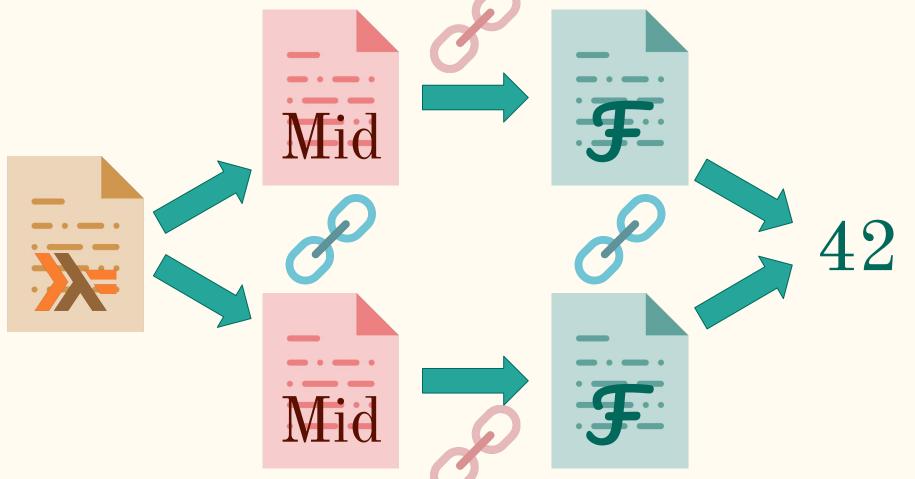
```
(\x : Bool. \y : Bool. case x,y of
 True ,True -> True
  False, False -> True
             -> False)
True True
```

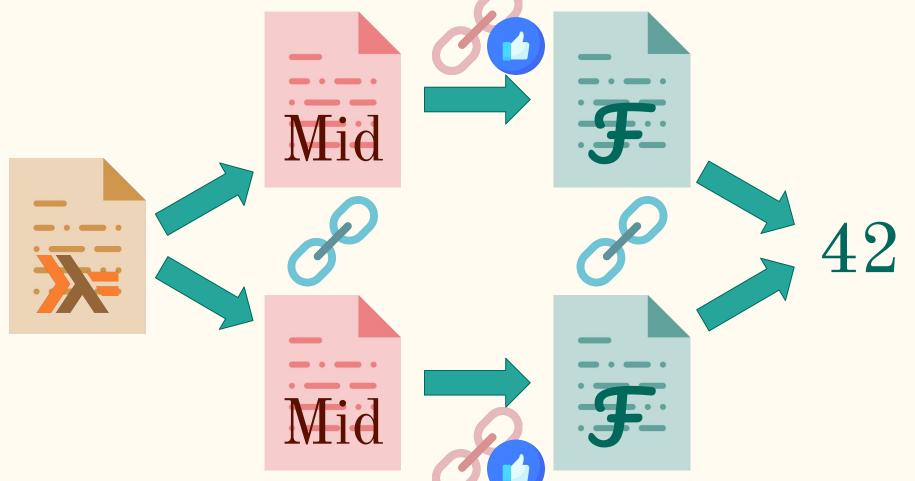


<u>_</u> ر

True True

185





```
not :: Eq Bool => Bool -> Bool
not b = b == False
```

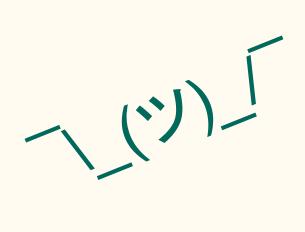
```
not :: Eq Bool => Bool -> Bool
not b = b == False
```

```
inst Eq Bool where
 True == True = True
  False == False = True
              = False
not :: Eq Bool => Bool -> Bool
not b = b == False
```

```
inst Eq Bool where
 True == True = True
  False == False = True
              = False
not :: Eq Bool => Bool -> Bool
not b = b == False
```

```
inst Eq Bool where
  True == True = True
  False == False = True
                = False
not :: Eq Bool => Bool -> Bool
```

not b = b == False



```
inst Eq Bool where
 True == True = True
  False == False = True
       == = False
not :: Eq Bool => Bool -> Bool
not b = b == False
```

```
inst Eq Bool where
 True == True = True
  False == False = True
             = False
not :: Eq Bool => Bool -> Bool
```

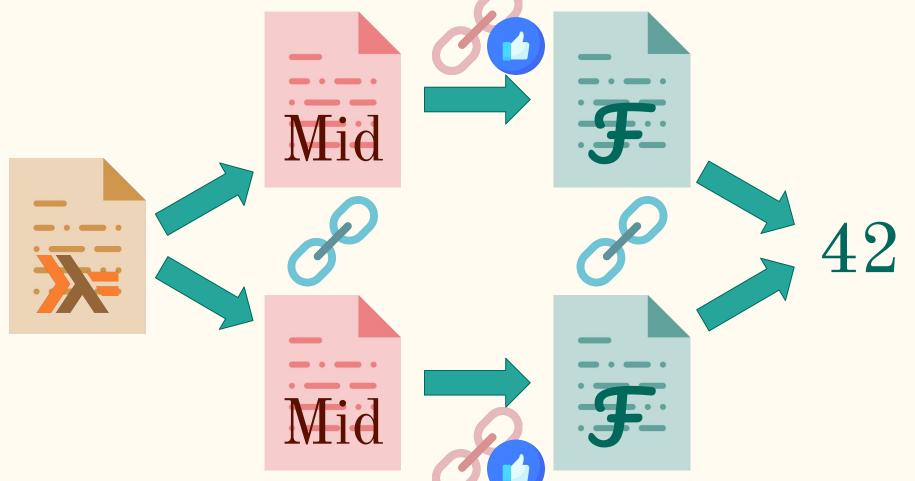
not b = b == False

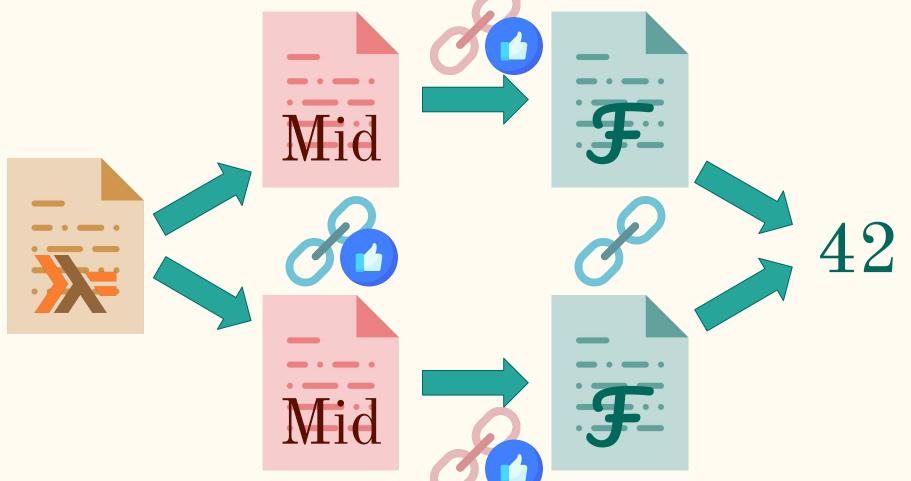
Pointer	Implem.
•	Eq Bool :

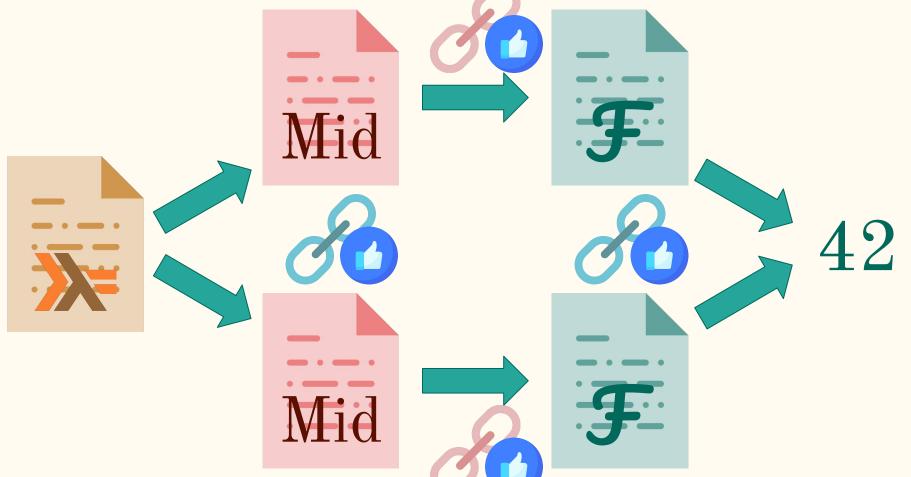
```
inst Eq Bool where
 True == True = True
  False == False = True
             = False
not :: Eq Bool => Bool -> Bool
```

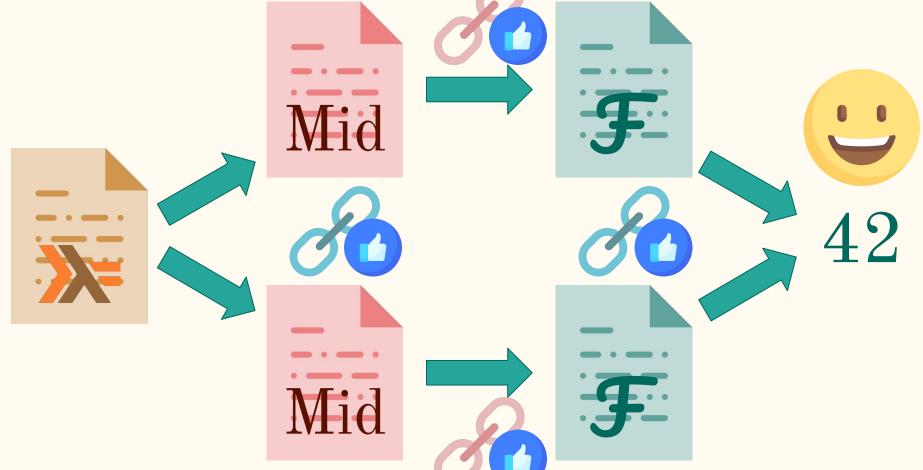
not b = b == False

Pointer	Implem.
9	Eq Bool :









Future Work

From the rule premise:

$$M': (\Sigma; \Gamma_C; \Gamma \Rightarrow \sigma) \mapsto (\Sigma; \Gamma_C; \Gamma', x : \sigma_1 \Rightarrow \sigma') \rightsquigarrow M'$$
 (193)
 $\Sigma; \Gamma_C; \Gamma' \models_{\mathfrak{m}} e_1 : \sigma_1 \leadsto e_1$ (194)
 $\Gamma_C; \Gamma' \models_{\Gamma} \sigma_1 \leadsto \sigma_1$ (195)

$$\Gamma_C$$
; $\Gamma' \vdash_{ry} \sigma_1 \leadsto \sigma_1$

The goal to be proven is the following:

$$\Sigma; \Gamma_C; \Gamma' \vdash_{tm} \text{let } x : \sigma_1 = e_1 \text{ in } M'[e] : \sigma' \leadsto \text{let } x : \sigma_1 = e_1 \text{ in } M'[e]$$

From the induction hypothesis and Equation 193, it follows that:

$$\Sigma; \Gamma_C; \Gamma', \chi : \sigma_1 \vdash_{tm} M'[e] : \sigma' \leadsto M'[e]$$
 (196)

The goal follows from iTM-LET, in combination with Equations 194, 195 and 196.

Theorem 18 (Strong Normalization).

If Σ ; Γ_C ; $\bullet \vdash_{tm} e : \sigma \text{ then } \exists v : \Sigma \vdash e \longrightarrow^* v$.

Proof. By Theorem 19 and 20, with $R^{SN} = \bullet$, $\phi^{SN} = \bullet$, $\gamma^{SN} = \bullet$, since $\Gamma = \bullet$.

Lemma 35 (Well Typedness from Strong Normalization).

 $e \in SN[\![\sigma]\!]_{piN}^{\Sigma\Gamma_C}$, then $\Sigma;\Gamma_C; \bullet \vdash_{an} e : R^{SN}(\sigma)$

Proof. The goal is baked into the relation. It follows by simple induction on σ .

Lemma 36 (Strong Normalization preserved by forward/backward reduction).

Suppose Σ ; Γ_C ; $\bullet \vdash_m e_1 : R^{SN}(\sigma)$, and $\Sigma \vdash e_1 \longrightarrow e_2$, then

• If
$$e_1 \in SN[\sigma]_{gss}^{\Sigma\Gamma_c}$$
, then $e_2 \in SN[\sigma]_{gss}^{\Sigma\Gamma_c}$.

Proof. Part 1 By induction on σ .

 $\boxed{ \begin{array}{c} \mathbf{Bool} \\ \hline \mathbf{Bool} \end{array}} \quad e_1 \in \mathcal{SN}[\![Bool]\!]_{\mathbb{R}^{5,\Gamma_C}}^{\Sigma,\Gamma_C} \triangleq \Sigma; \Gamma_C; \bullet \vdash_{tm} e_1 : Bool \\ \end{array}$ $\wedge \exists v : \Sigma \vdash e_1 \longrightarrow^* v$

> By Preservation (Theorem 8), we know that $\Sigma; \Gamma_C; \bullet \vdash_{tm} e_2 : Bool$. Because the evaluation process is deterministic, given $\Sigma \vdash e_1 \longrightarrow^* v$, we have $\Sigma \vdash e_2 \longrightarrow^* v$.

 $e_1 \in SN[a]_{R^{SN}}^{\Sigma,\Gamma_C} \triangleq \Sigma; \Gamma_C; \bullet \vdash_{Im} e_1 : R^{SN}_1(a)$

Type variable $\wedge \exists v : \Sigma \vdash e_1 \longrightarrow^* v$ $\wedge v \in R^{SN}_{2}(a)$

Similar to Bool case.

 $e_1 \in SN[\sigma_1 \rightarrow \sigma_2] \xrightarrow{\Sigma_1\Gamma_c} \pm \Sigma; \Gamma_C; \bullet \vdash_{loc} e_1 : R^{SN}(\sigma_1 \rightarrow \sigma_2)$ Function

 $\wedge \exists v : \Sigma \vdash e_1 \longrightarrow^* v$ $\land \forall e' : e' \in SN[\sigma_1]_{g \in N}^{\Sigma, \Gamma_C} \Rightarrow e_1 e' \in SN[\sigma_2]_{g \in N}^{\Sigma, \Gamma_C}$

By Preservation (Theorem 8), we know that $\Sigma; \Gamma_C; \bullet \vdash_{lm} e_2 : R^{SN}(\sigma_1 \to \sigma_2)$. Because the evaluation process is deterministic, given $\Sigma \vdash e_1 \longrightarrow^* v$, we have $\Sigma \vdash e_2 \longrightarrow^* v$. Given any $e' : e' \in SN[[\sigma_1]]_{gss}^{\Sigma,\Gamma_c}$, we know that $\Sigma \vdash e_1 \longrightarrow e_2$, so $\Sigma \vdash e_1 e' \longrightarrow e_2 e'$. By induction hypothesis, we get $e_2 e' \in SN[\sigma_2]_{\text{max}}^{\Sigma T}$.

63

From the rule premise:

$$M': (\Sigma; \Gamma_{\mathcal{C}}; \Gamma \Rightarrow \sigma) \mapsto (\Sigma; \Gamma_{\mathcal{C}}; \Gamma', x : \sigma_1 \Rightarrow \sigma') \rightsquigarrow M'$$
 (193)
 $\Sigma; \Gamma_{\mathcal{C}}; \Gamma' \models_{\mathfrak{M}} e_1 : \sigma_1 \leadsto e_1$ (194)
 $\Gamma_{\mathcal{C}}; \Gamma' \models_{\mathfrak{M}} \sigma_1 \leadsto \sigma_1$ (195)

The goal to be proven is the following:

$$\Sigma; \Gamma_C; \Gamma' \vdash_{tm} \text{let } x : \sigma_1 = e_1 \text{ in } M'[e] : \sigma' \leadsto \text{let } x : \sigma_1 = e_1 \text{ in } M'[e]$$

From the induction hypothesis and Equation 193, it follows that:

$$\vdash_{tm} M'[e] : \sigma' \leadsto M'[e]$$
 (196)

The goal follows from il quations 194, 195 and 196.

Theorem 18 (Strong Norma

If Σ ; Γ_C ; • $\vdash_{tm} e : \sigma \text{ then } \exists v$

Proof. By Theorem 19 and 20 = •, since Γ = •.

Lemma 35 (Well Typedness from

 $e \in SN[\sigma]_{gin}^{\Sigma\Gamma_C}$, then $\Sigma; \Gamma_C; \bullet \vdash_{an} e : 1$

Proof. The goal is baked into the relation

Lemma 36 (Strong Normalization preserv rward Suppose Σ ; Γ_C ; $\bullet \vdash_{am} e_1 : R^{SN}(\sigma)$, and $\Sigma \vdash$

Proof. Part 1 By induction on o. Bool e₁ ∈ SN[Bool^B]

Function

By Preservation (Theorem, Bool. Because the evaluation process is deterministic, given $\Sigma \vdash e_1$

$$e_1 \in SN[a]_{R^{SN}}^{\Sigma,\Gamma_C} \triangleq \sum_{1 : R^{SN}_1} [:R^{SN}_1]$$
Type variable

Similar to Bool case.

 $e_1 \in SN[\![\sigma_1 \to \sigma_2]\!]_{\mathbb{R}^{dN}} = \mathcal{L}; 1_C, \bullet \vdash_{lm} e_1^{-1}; R^{SN}_{1}(\sigma_1 \to \sigma_2)$

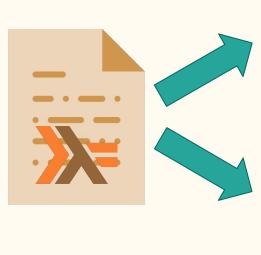
$$\wedge \exists v : \angle \vdash e_1 \longrightarrow v$$

 $\wedge \forall e' : e' \in SN[\sigma_1]_{g \in N}^{\Sigma, \Gamma_c} \Rightarrow e_1 e' \in SN[\sigma_2]_{g \in N}^{\Sigma, \Gamma_c}$

By Preservation (Theorem 8), we know that $\Sigma : \Gamma_C : \bullet \vdash_{Bm} e_2 : R^{SN}_1(\sigma_1 \to \sigma_2)$. Because the evaluation process is deterministic, given $\Sigma \vdash e_1 \longrightarrow^* v$, we have $\Sigma \vdash e_2 \longrightarrow^* v$. Given any $e' : e' \in SN[[\sigma_1]]_{g \in S}^{\Sigma \mid L}$; we know that $\Sigma \vdash e_1 \longrightarrow e_2$, so $\Sigma \vdash e_1 e' \longrightarrow e_2 e'$. By induction hypothesis, we get $e_2 e' \in SN[\sigma_2]_{\text{max}}^{\Sigma T}$.

63

Questions?



References

Icons made by DinosoftLabs, Freepik, Pixel perfect, Smashicons & Vectors Market from www.flaticon.com

Logical relations example edited from Types and Programming Languages, B. Pierce, MIT Press, 2002