Quantified Class Constraints
in Haskell

KU LEUVEN

KU Leuven
Gert-Jan Bottu

Tom Schrijvers
George Karachalias Bruno C. d. S. Oliveira Philip Wadler

University of Hong Kong University of Edinburgh

Type Classes!

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 2

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 3

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

instance Eq Char where
X ==y = eqChar x vy

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 4

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

instance Eq Char where
X ==y = eqChar x vy

instance Eq Bool where

True == True = True
False == False = True
== = False

I'P. Wadler and S. Blott 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 6

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

instance Eq a => Eq [a] where

(1 =[] = True
(h1:t1) == (h2:t2) = (h1l == h2) & (t1 == t2)
== = False

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 7

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

instance Eq a => Eq [a] where

(1 =[] = True
(h1:t1) == (h2:t2) = (h1l == h2) & (t1 == t2)
== = False

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 3

Type Classes!

class Eq a where
(==) :: a -> a -> Bool

instance Eq a => Eq [a] wher
[] == [] = m.v
(h1:t1) (h2:t2) = (hl == h2) & (t1 == t2)
= False

I'P. Wadler and S. Bloft 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc 7

Type Classes

instance Eq a => Eq [a] where

[] [] True

(h1:t1) (h2:t2) = (hl == h2) &% (t1 == t2)
False

class Eqg a => Ord a where
(<=) :: a -> a -> Bool

10

Type Classes

instance Eq a => Eq [a] where » forall a. Eq a => Eq [a]

(1 =[] = True
(h1:t1) == (h2:t2) = (h1l == h2) & (t1 == t2)
== = False

class Eqg a => Ord a where
(<=) :: a -> a -> Bool

11

Type Classes

instance Eq a => Eq [a] where » forall a. Eq a => Eq [a]

[] == [] = True
(hl:t1) == (h2:t2) = (h1l == h2) && (t1 == t2)
_ == = False
class Eq a => Ord a where » forall a. Ord a => Eqg a
(<=) :: a -> a -> Bool

12

13

P = Eq (Nat, Bool)

14

Va,b.(Eqa,Eq b) = Eq (a,b) € P

P = Eq (Nat, Bool)

15

Ya,b.(Eqa,Eq b) = Eq (a,b)e P PE EqNat P E Eq Bool

P = Eq (Nat, Bool)

16

Eqg Nat € P

Ya,b.(Eqa,Eq b) = Eq (a,b)e P PE EqNat P E Eq Bool
P = Eq (Nat, Bool)

17

Eqgq Nat € P Eq Bool € P

Ya,b.(Eqa,Eq b) = Eq (a,b)e P PE EqNat P E Eq Bool
P = Eq (Nat, Bool)

18

Quantified

Class Constraints

19

Quantified

Class Constraints

C ::=TCr

20

Quantified

Class Constraints

C ::=TCr

)

C = TCT|C1:>C2|VCI.C

21

O Precise specifications

O Terminating (co)recursive resolution

22

Motivation: Precise Specifications

23

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

24

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 25

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C (lift (1lift x))

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 26

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C (lift (1lift x))
Y

m 4
2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 27

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C (lift (1lift x))
—
(t2 m) a

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 28

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C Slift (1ift x)z

'
tl (t2 m) a

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 29

Motivation: Precise Specifications

class Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C (lift (1lift x))

f Monad (t2 m)

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 30

Motivation: Precise Specifications

class (forall m. Monad m => Monad (t m)) => Trans t where
lift :: Monad m => ma -> (t m) a

newtype (t1 * t2) ma = C { runC :: t1 (t2 m) a }?

instance (Trans tl1, Trans t2) => Trans (tl1 * t2) where
lift x = C (1lift (1lift x))

2Tom Schrijvers and Bruno C.d.S. Oliveira. 2011. Monads, Zippers and Views: Virtualizing the Monad Stack 31

Motivation:

Terminating (Co)recursive Resolution

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 32

Motivation:

Terminating (Co)recursive Resolution

data Rose a = Branch a [Rose a]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 33

Motivation:

Terminating (Co)recursive Resolution

data Rose a = Branch a [Rose a]

data GRose f a = GBranch a (f (GRose f a))

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 34

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 35

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 36

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 37

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 38

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 39

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

instance Show a => Show [a] where ...

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 40

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

instance Show a => Show [a] where ...

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 41

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

instance Show a => Show [a] where ...

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]
-> Show Bool, Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 42

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

instance Show a => Show [a] where ...

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]
-> Show Bool, Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 43

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, Show (f (GRose f a))) => Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show xs

instance Show a => Show [a] where ...

Show (GRose [] Bool)
-> Show Bool, Show [GRose [] Bool]

-> Show Bool, Show (GRose [] Bool)
=> een

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 44

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, forall x. Show x => Show (f x))
=> Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show Xxs

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 45

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, forall x. Show x => Show (f x))
=> Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show Xxs

Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 46

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, forall x. Show x => Show (f x))
=> Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show Xxs

Show (GRose [] Bool)

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 47

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, forall x. Show x => Show (f x))
=> Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show Xxs

Show (GRose [] Bool)
-> Show Bool, forall x. Show x => Show [X]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 48

Motivation:

Terminating (Co)recursive Resolution

data GRose f a = GBranch a (f (GRose f a))

instance (Show a, forall x. Show x => Show (f x))
=> Show (GRose f a) where
show (GBranch x xs) = show x ++ "-" ++ show Xxs

Show (GRose [] Bool)
-> Show Bool, forall x. Show x => Show [X]

3 Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes 49

Intermezzo:

Cycle-aware constraint resolution 4

4 Ralf Ldmmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class: Extensible Generic Functions S0

Intermezzo:

Cycle-aware constraint resolution 4

O Only cyclic resolutions

4 Ralf Ldmmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class: Extensible Generic Functions Sl

Motivation:

Terminating (Co)recursive Resolution

52

Motivation:

Terminating (Co)recursive Resolution

data Perfect a = Zero a | Succ (Perfect (a , a))?°

5 Ralf Hinze. 2000. Perfect frees and bit-reversal permutations

53

Motivation:

Terminating (Co)recursive Resolution

data Perfect a = Zero a | Succ (Perfect (a , a))?°

data Mu h a = In { out :: h (Mu h) a }*¢

5 Ralf Hinze. 2000. Perfect frees and bit-reversal permutations
6Ralf Hinze. 2010. Adjoint Folds and Unfolds: Or: Scything Through the Thicket of Morphisms o4

Motivation:

Terminating (Co)recursive Resolution

data Perfect a = Zero a | Succ (Perfect (a , a))?
data Mu h a = In { out :: h (Mu h) a }*¢

data HPerf f a = HZero a | HSucc (f (a , a))

5 Ralf Hinze. 2000. Perfect frees and bit-reversal permutations
6Ralf Hinze. 2010. Adjoint Folds and Unfolds: Or: Scything Through the Thicket of Morphisms

S5

Motivation:

Terminating (Co)recursive Resolution

data Perfect a = Zero a | Succ (Perfect (a , a))?®
data Mu h a = In { out :: h (Mu h) a }*¢
data HPerf f a = HZero a | HSucc (f (a , a))

type Perfect = Mu HPerf

5 Ralf Hinze. 2000. Perfect frees and bit-reversal permutations
6Ralf Hinze. 2010. Adjoint Folds and Unfolds: Or: Scything Through the Thicket of Morphisms 96

Motivation:

Terminating (Co)recursive Resolution

data Mu h a = In { out :: h (Mu h) a }
data HPerf f a = HZero a | HSucc (f (a , a))

type Perfect = Mu HPerf

S7

Motivation:

Terminating (Co)recursive Resolution

data Mu h a = In { out :: h (Mu h) a }
data HPerf f a = HZero a | HSucc (f (a , a))
type Perfect = Mu HPerf

instance (Show (h (Mu h) a)) => Show (Mu h a) where
show (In x) = show X

instance (Show a, Show (f (a , a))) => Show (HPerf f a) where
show (HZero a) = "(Z" ++ show a ++ ")"
show (HSucc xs) = "(S" ++ show xs ++ ")"

58

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

59

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)

60

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)

61

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)

62

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)
-> Show (HPerf (Mu HPerf) Int)

63

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)
-> Show (HPerf (Mu HPerf) Int)

64

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)

-> Show (Mu HPerf Int)

-> Show (HPerf (Mu HPerf) Int)

-> Show Int, Show (Mu HPerf (Int , Int))

65

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)

-> Show (Mu HPerf Int)

-> Show (HPerf (Mu HPerf) Int)

-> Show Int, Show (Mu HPerf (Int , Int))

66

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)

-> Show (Mu HPerf Int)

-> Show (HPerf (Mu HPerf) Int)

-> Show Int, Show (Mu HPerf (Int , Int))

-> Show Int, Show (HPerf (Mu HPerf) (Int , Int))

67

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)
-> Show (HPerf (Mu HPerf) Int)
-> Show Int, Show (Mu HPerf (Int , Int))
-> Show Int, Show (HPerf (Mu HPerf) (Int , Int))
-> Show Int, Show (Int , Int),
Show (Mu HPerf ((Int , Int) , (Int , Int)))

68

Motivation:

Terminating (Co)recursive Resolution

instance (Show (h (Mu h) a)) => Show (Mu h a) where ...
instance (Show a, Show (f (a , a))) => Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)
-> Show (HPerf (Mu HPerf) Int)
-> Show Int, Show (Mu HPerf (Int , Int))
-> Show Int, Show (HPerf (Mu HPerf) (Int , Int))
-> Show Int, Show (Int , Int),
Show (Mu HPerf ((Int , Int) , (Int , Int)))

69

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where
show (In x) = show X

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where
show (HZero a) "(Z " ++ show a ++ ")"
show (HSucc xs) "(S " ++ show xs ++ ")"

/0

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

/1

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

Show (Perfect Int)

/2

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)

/3

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

Show (Perfect Int)
-> Show (Mu HPerf Int)

74

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

Show (Perfect Int)

-> Show (Mu HPerf Int)

-> Show Int, forall f x. (Show x, forall y. Show y => Show (f y))
=> Show (HPerf f x)

75

Motivation:

Terminating (Co)recursive Resolution

instance (Show a,
forall f x. (Show x, forall y. Show y => Show (f y)) => Show (h f x))
=> Show (Mu h a) where ...

instance (Show a, forall x. Show x => Show (f x))
=> Show (HPerf f a) where ...

Show (Perfect Int)

-> Show (Mu HPerf Int)

-> Show Int, forall f x. (Show x, forall y. Show y => Show (f y))
=> Show (HPerf f x)

76

Motivation:

Faster Coroutine Pipelines 8

8 Michael Spivey. 2017. Faster Coroutine Pipelines /7

Motivation:

Faster Coroutine Pipelines 8

class forall i o. Monad (pipe 1 o) => PipeKit pipe where
input :: pipe 1 o 1
output :: o -> pipe 1 o ()
(I|) :: pipe i n () -> pipe n o () -> pipe 1 0 a
effect :: I0 a -> pipe 1 0 a
exit :: plpe 1 0 a

/8

8 Michael Spivey. 2017. Faster Coroutine Pipelines

Motivation:
Faster Coroutine Pipelines 8

¥

class forall i o. Monad (pipe 1 o) => PipeKit pipe where

input :: pipe 1 o 1

output :: o -> pipe 1 o ()

(I|) :: pipe i n () -> pipe n o () -> pipe 1 0 a
effect :: I0 a -> pipe 1 0 a

exit :: plpe 1 0 a

79

8 Michael Spivey. 2017. Faster Coroutine Pipelines

80

Constraint Entailment ?

P.I' = C| Constraint Entailment

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 81

Constraint Entailment ?

! P.I' = C| Constraint Entailment

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 82

Constraint Entailment ?

P.I' = C| Constraint Entailment

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 83

Constraint Entailment ?

P.I' = C| Constraint Entailment
CeP P.laEC P;1' EVYa.C [k, T
(SpecC) (YIC) (VEC)
P;I'EC P;I' EVYa.C P;T' E[t/a]C
P,Cl;FIZCQ P;F|=C1:>C2 P,F|:C1
(=10) (=EQC)
P.TE=C = (G Pl E G

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 84

Constraint Entailment ?

P.I' = C| Constraint Entailment

CeP P.l,aEC P.I' EVa.C [k, T
(Spec(C) (YIC) (VEC)
P.T'EC P;I' EVYa.C P;T' E[t/a]C
P,Cl;FIZCQ P;F|=C1:>C2 P,F|:C1
(=10) (=EQC)
Pl EC = (P.1E (C

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 85

Constraint Entailment ?

P.I' = C| Constraint Entailment

CeP P.l,aEC P. 1" =EVa.C 'k T
(SpecC) (YIC) (YEC)
P;I'EC P.I' =Va.C P. 1" = [1/a]lC
P,Cl;FIZCQ P;F|=C1:>C2 P,F|:C1
(=10) (=EQC)
Pl EC = (P.1E (C

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 86

Constraint Entailment ?

P.I' = C| Constraint Entailment

CeP P.l,aEC P.I' EVa.C [k, T
(SpecC) (YIC) (VEC)
P;I'EC P;I' EVYa.C P;T' E[t/a]C
P,Cl;FIZCQ P;F|:C1=>C2 P;F|:C1
(=10) (=EC)
P;F|:C1=>C2 P;F|=C2

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 87

Constraint Entailment ?

P.I' = C| Constraint Entailment

CeP P.l,aEC P. 1" =EVa.C 'k T
(Spec(C) (VIC) (YEC)
P.T'EC P.I' =Va.C P. 1" = [1/a]lC
P,Cl;FIZCQ P;F|:C1=>C2 P;F|:C1
(=IC) (=EC)
P;F|:C1=>C2 P;F|=C2

? Ralf Hinze and Simon Peyton Jones. 2001. Derivable Type Classes 88

Typing: Ambiguous

89

Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

90

Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(=EC)

91

Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

[Eq a, Show a, Eq a]. T = Show a I10)
=
[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(=EC)

92

Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

Show a € [Eq a, Show a, Eq a]
[Eq a, Show a, Eq a]. T = Show a I10)
[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(SpecC)

(=EC)

93

Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

Show a € [Eq a, Show a, Eq a]

(SpecC)

[Eq a, Show a, Eq a]. T = Show a Eq a € [Eq a, Show a]

(=IC) (SpecC)

[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa (SEC)
=

[Eq a,Show a]; 1" E Show a

94

Typing: Focusing '°

95

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C]

96

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

97

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

98

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C]

O FEQw A

99

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C]

O FEQw A

)

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

100

Typing: Focusing '°

P:T = [C]

101

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C]

102

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

O FEQw A

103

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
O QA

104

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T |=[C] P,Ci;1 E [(7] P.I,b F [C]
P; T |: [C] — Cg] P; T |: [VbC]
CeP: 1, [CITEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
[0l EQw A

105

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T |=[C] P,Ci 1 E [(;] P.I,b E [C]
: (=R) (YR)
P.I' =[C, = (5] P.I' = [Vb.C]
CeP: 1, [CITEOwA VCieA: P.1 E|[(]
(UR)
P;I' E [O]
Ol Q@ A

106

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClTEOWA VYC,eA: P E|[C]
(OR)
P E [0]
[0l EQw A

107

10 Tom Schriivers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci;I' E [(] P.T',b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
T [C] = Qw A [[Cal EQ~ A
(=L)
[D[C = GlEQwA,C
L [[r/bIC1EQ A Tk
(VL) (QL)
[;[Vb.ClE QA O] FE Qe 108

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P [Q]
[QA [Cl E Qs A
(=L)
IT[C = GlEQwA,C
L [[r/DICIEQ A Tk, 7
(VL) (QL)
[[Vb.ClEQ w A SO FE Qv e 109

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
T [C] = Qw A [[Cal EQ~ A
(=L)
[D[C = GlEQwA,C
L [[r/pIC1E QA Tkt
(VL) (OL)
[;[Vb.ClE QA SO FE Qv e 110

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Typing: Focusing '°

P:T = [C] P,Ci;I' E [(] P.T',b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
[[Cl = Qw A [[Chl Qs A
(=L)
[D[C = GlEQwA,C
[[[7/DIC1 E Q w A 'k, 7
(VL) (QL)
[[Vb.C]E QO ~ A [L[OTE Qv e 11

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

P;T'|=C

SN \ 10 P:T E [C]
Typing: Focusing PTEC
PTE(C PCiTEIC] - PLHEI
P.T E[C| = (5] P.I' = [Vb.C]
CeP:T:[ClIEQ~A VCeA: P,TE[C]
(OR)
Pl E [Q]
[[C] = Q~w A [IGlEQwA |
(=L)
[D[C = GlEQwA,C
L [[r/bICIEQwA Tk, T |
(VL) (OL)
[[Vb.ClE QO ~ A [GIOIE Qv e 112

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci;I' E [(] (=R) P.T',b E [C] (VR)
P;F |: [Cl = Cz] P;F |: [VbC]
CeP:1;[ClTEOWA VYC,eA: P.I E|[C]
(OR)
P E [Q]
[QA [Cl E Qs A
(=L)
IT[C = GlEQwA,C
[[[7/DIC1 E Q » A 'k, 7
(VL) (QL)
[;[Vb.ClE Q ~ A IO FE Qv e 113

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci; 1 E [(C7] (=R) P.I,b E [C] (VR)
P; 1 |: [Cl = Cz] P T |: [VbC]
CeP: T;[C1EQ~A V(G eA: PTE[C] oR)
P.I' E [O]
O] | Qw4 [(G E QA
(=L)
IT[C = GlEQwA,C
L [[r/b]C1E Q » A 'k, 7
(VL) (QL)
[[Vb.ClEQ ~ A [GIOIE Qv e 114

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci; 1 E [(C7] (=R) P.I,b E [C] (VR)
P; 1 |: [Cl = Cz] P T |: [VbC]
CeP: T;[C1EQ~A V(G eA: PTE[C] oR)
P T E [Q]
O] | Qw4 LG E QA
(=L)
IT[C = GlEQwA,C
[] ClFEOwA [k,
- ¢ i (VL) (QL)
[[Vb.ClEQ ~ A [GIOIE Qv e 15

10 Tom Schrijvers, Bruno C. d. S. Oliveira, and Philio Wadler. 2017. Cochis: Deterministic and Coherent Implicits

Type Inference

116

Type Inference

O Backtracking

117

Type Inference

O Backtracking
O Unification

118

Type Inference

OBacktracking
O Unification
Olncremental

119

Type Inference

OBacktracking

O Unification
Olncremental
OElaborate into System F

120

Type Inference

O Backtracking a:P ke A ~ A | Constraint Solving Algorithm
O Unification

Olncremental
OElaborate into System F

121

Type Inference

O Backtracking a:P ke A ~ A | Constraint Solving Algorithm
O Unification

a.PE [C]l ~ A| Constraint Simplification

Olncremental
OElaborate into System F

122

Type Inference

O Backtracking a:P ke A ~ A | Constraint Solving Algorithm
O Unification

a.PE [C]l ~ A| Constraint Simplification

Olncremental

OElaborate into System F a:[Cl EQ~ A:0| Constraint Matching

123

Type Inference

o.P |= [Vb.Eq b = Eq [b]] » (Vb. ?)

124

Type Inference

b;P | [Eqb = Eq[b]] » (Egb= ?)
o |= [Vb.Eq b = Eq[b]] ~ (Vb. ?)

(VR)

125

Type Inference

b:P.Eqb |= [Eq[b]] » ?
b;P | [Eqb = Eq[b]] w (Egb= ?)
o.P |= [Vb.Eq b = Eq [b]] » (Vb. ?)

(=R)

(VR)

126

Type Inference

b:[Va.Eqa = Eqla]] E Eq[b]~ ? :7?
b:P,Eqb [[Eq[b]] » ?

b:® |=[Eqb= Eq[b]] w» (Eqgb= ?)

o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(OR)

(=R)

(VR)

127

Type Inference

b:|Eqa = Eqla]l F Eq[b] » ? ;7
b;&z.Eqaz}Eq[a]]th[b]w ? 7
b:P.Eqb [[Eq[b]] » ?
b:® |=[Eqb= Eq[b]] w» (Eqgb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(VL)

(OR)

(=R)

(VR)

128

Type Inference

b;[Eq [a]] |= Eq [b] ~> e; ?
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P,Eqb [[Eq[b]] » ?
b:® |=[Eqb= Eq[b]] w» (Eqgb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(=L)

(VL)

(OR)

(=R)

(VR)

129

Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] »> e ?
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b]~ ? :7?
b:P.Eqb |= [Eq[b]] »> ?
b:® |5 [Eqb = Eq[b]] w (Eqgb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

130

Type Inference

unify(b;a ~ b) =6 = [b/a]
b: [Eq [a]] - Eq [b] ~ #:0
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P.Eqb |= |Eq[D]] ~ ?
b:® |=Eqb = Eq[b]] v (Eqb= 7?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

131

Type Inference

unify(b;a ~ b) =6 = [b/a]
b: [Eq [a]] - Eq [b] ~ #0
b:[Eqa = Eq|a]] F Eq[b] ~ Eq b;0
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P.Eqb |= |Eq[D]] ~ ?
b:P |=[Eqb = Eq[b]] » (Eqb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

132

Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eq [a]] = Eq [b] > ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[b]] »> ?
b:® |5 [Eqb = Eq[b]] w (Eqgb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (VD. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

133

Type Inference

unify(b;a ~ b) =6 = [b/a]
b:|Eq [a]] & Eq [b] »> e: 0
b:[Eq a = Eq|a]] F Eq[b] »> Eqb; 0
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[b]] w> Eq b
b:P = [Eqb = Eq[b]] = (Egb= ?)
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

134

Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] ~> ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[D]] ~ Eqb
b;P |=[Eqb = Eq[b]] » (Eqb = Eqb)
o.P |= [Vb.Eqb = Eq[b]] » (VD. ?)

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)

135

Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] ~> ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[D]] ~ Eqb
b;P |=[Eqb = Eq[b]] » (Eqb = Eqb)
.P |=|[Vb.Eqb = Eq|b]] » (Vb.Eqb = Eqb)

(QL)

(=L)

(VL)

(OR)

136

Type Inference

o P [VYh.Eqb = Eqb] ~ ?

137

Type Inference

b:PE=[Eqb = Eqb]~ ?
o:PE[Vb.Eqbh = Eqb] ~ ?

(YR)

138

Type Inference

b;P,Eq b E [Eq D] ~» ?
bPE=[Eqb = Eqb]~ ?
o;P = [Vb.Eqb = Eqb]~ ?

(=R)

(YR)

139

Type Inference

bi[Eq D) E Eq b~ 7?;?
b;P,Eq b E [Eq D] ~» ?
bPE=[Eqb = Eqb]~ ?
o:PE[Vb.Eqb = Eqb] ~ ?

(QR)

(=R)

(YR)

140

Type Inference

unify(b;b ~b) =0 = ?
bi[Eqbl = Eqb~ 7,7
b;P,Eq b E [Eq D] ~» ?
b;PE[Egb= Eqb]~ ?
o;P = [Vb.Eqb = Eqb] ~ ?

(QL)

(QR)

(=R)

(YR)

141

Type Inference

unify(b;b ~b)y=0=e
== (QL)
bi[Eqbl = Eqb~ 7,7
b;P,Eq b E [Eq b] ~ ?
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(QR)

(=R)

(YR)

142

Type Inference

(b;b~b)y=0=e
bu";? (b]le)b e OH)
. > @
s L4 q hihd (OR)
b;P,Eq b [Eqb] ~» ?
(=R)
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(YR)

143

Type Inference

unify(b;b ~b)y=0=e
b;|[Eqgbl E Eqb ~> e e
b;P,Eq b E [Eq D] ~> e
== (R)
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(QL)

(QR)

(YR)

144

Type Inference

unify(b;b ~b)y=0=e
b;|Eqbl = Eqgb ~ e;e
b;P,Eq b = [Eq D] ~> e
b;PE|Egb= Eqb] ~ e
o.PE=[VD.Eqb = Eqb] ~ ?

(QL)

(QR)

(=R)

(YR)

145

Type Inference

unify(b;b ~b)y=0=e
b;|Eqbl = Eqgb ~ e;e
b;P,Eq b = [Eq D] ~> e
b;PE|Egb= Eqb] ~ e
o.PE[Vb.Eqb = Eq D] e

(QL)

(QR)

(=R)

(YR)

146

Metatheory

147

Metatheory: Termination

148

Metatheory: Termination

O Resolution tree
O Node = godl
O Edge = applying axiom

149

Metatheory: Termination

O Resolution tree

O Node = godl
O Edge = applying axiom
O Norm
lall = 1
Ilt1 = 2|l = 1+ |zl + |72l

150

Metatheory: Termination

O Resolufion tree

O Node = godl

O Edge = applying axiom
O Norm

a =1
O Strictly decreasing -> no infinite paths " ”

Ity — 2| 1+ |71 + || z2]]

151

Metatheory: Termination

O Resolufion tree

O Node = godl

O Edge = applying axiom
O Norm

a =1
O Strictly decreasing -> no infinite paths " ”

Ity — 2| 1+ |71 + || z2]]

O Superclass axiom: non increasing

152

Metatheory: Termination

O Resolufion tree

O Node = godl

O Edge = applying axiom
O Norm

a =1
O Strictly decreasing -> no infinite paths " ”

Ity — 2| 1+ |71 + || z2]]

O Superclass axiom: non increasing
O DAG

153

Metatheory: Termination

O Resolution tree

O Node = godl
O Edge = applying axiom
O Norm
O Strictly decreasing -> no infinite paths ||a|| =1
It = 2l = 1+ ||;al + [|z2]]
O Superclass axiom: non increasing
O DAG

O Bounded number of superclass applications

154

Metatheory: Coherence

155

Metatheory: Coherence

O Non determinism

156

Metatheory: Coherence

O Non determinism
O Computational content <= instances

157

Metatheory: Coherence

O Non determinism
O Computational content <= instances
O Non overlapping instances

158

Metatheory: Ambiguity

159

Metatheory: Ambiguity

instance C g => D Int where ...

160

Metatheory: Ambiguity

instance C g => D Int where ... » forall a. C a => D Int

161

Metatheory: Ambiguity

instance C g => D Int where ... » forall a. C a => D Int

O Haskell '98: All guantified variables should appear in the head

162

Metatheory: Ambiguity

instance C g => D Int where ... » forall a. C a => D Int

O Haskell '98: All guantified variables should appear in the head
O QCC's:

163

Metatheory: Ambiguity

instance C g => D Int where ...

forall a.

O Haskell '98: All guantified variables should appear in the head

O QCC's:

unamb(C)

Unambiguity

i |t_.lnamb C

unamb(C)

UNAMB

C a => D Int

164

Metatheory: Ambiguity

instance C g => D Int where ... forall a. C a => D Int

O Haskell '98: All guantified variables should appear in the head

O QCC's: unamb(C) | Unambiguity
o |t_.lnamb C
UNAMB
unamb(C)
a tnay C | Unambiguity
unamb(Cy)
a - fv(Q) E, a Knamb C a Kinamb CZ
= (QU) = (YU) = (=)
a Knamb Q a Kinamb Va.C a Kinamb Cl = CZ

165

166

O Metatheory

167

O Metatheory
O Quantification over Predicates

168

O Metatheory
O Quantification over Predicates

O lInteraction with mainstream GHC features

169

O Metatheory
O Quantification over Predicates

O Interaction with mainstream GHC features
O Coercions problem !

1 hitps://ghc.haskell.org/trac/ghc/ticket/9123 170

Quantified Class Consiraints

Quantified Class Constraints

Gert-Jan Bottu Georgios Karachalias Tom Schrijvers
KU Leuven KU Leuven KU Leuven
Relgium Belgium Belgium
be georgh Kuleuven be tom.schrijversGcs kuleuven be
Bruno C. d. S. Oliveira Philip Wadler
University of Hong Kong

China
brunogdes.hku.hk

Abstract

Quantified class constraints have been proposed many years ago
1o raise the expressive power of type classes from Horn clauses
to the universal fragment of Hereditiary Harrop logic. Yet, while
it has been much asked for over the years, the feature was never

University of Edinburgh
Y
wadler@int.ed ac.uk

their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class constraints. Their motivation
was 1o deal with higher-kinded types which seemed to require

implemented or studied in depth. Instead, several
have been proposed, all of which are ultimately stopgap measures.

“This paper revisits the idea of quantified class constraints and
elaborates it into a practical language design. We show the merit
of quantified class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative specification of the type system as well ax a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
prototype implementation,

CCS$ Coneepts + Theory of computation — Ty pe structures;
+ Software and ity engineering —» Functional languages:
Keywords Haskell, type classes, type inference

ACM Reference Format:

Gent-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. 4. S. Olivelrs,
and Philip Wadler 2017, Quantified Class Constraints. In Iroceedings of 101k
ACM SIGILAN International Haskell Symposium, Oxford, UK, September 7.8
207 (Haskell'17). 14 pages.

httpsy//doi org/10.1145/3122955.3122967

1 Introduction
Since Wadler and Blott [33] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell's comerstone features. Over the years type
classes have been the subject of many language extensions that
it expr v Exam-
ples of such extensions include: multi-parameter type classes [19]:
functional dependencies [18]; or associated types [3].
Sevetal of these implemented extensions were inspired by the
analogy between type classes and predicates in Horn clauses. Yet,
Hom clauses have their limitations. As a small side-product of

Permission to make digial or hard coples of al o part of this work for persanal or
aranied

on the fist page:. Copyrgh Ao
st b b Abstracting with credi s permitied To copy otherwise o republish
1o port an servers

afee Request permussions from permisssansy#acm o,
Haskel 17, September 74, 217, Onford, UK
© 2017 Asscciation fox C

that were impos press in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class constraints (Section 2):

1. they provide a natural way to express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of

g from Cocais [32], a calculus for Scala-style implic-

s [26, 27), and adapts it 1o the Haskell setting, We account

for two notable differences: a global set of non-overlapping in-

stances and support for superclasses,

« We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

e gh kol aeg e/ ghe tck

148

171

Quantified Class Consiraints

Quantified Class Constraints

Gert-Jan Bottu Georgios Karachalias Tom Schrijvers
KU Leuven KU Leuven KU Leuven
Belgium Belgium Belgium
be georgi kuleuven be tom.schrijversG@es kuleuven be

Bruno C. d. S. Oliveira
University of Hong Kong

China
brunogdes.hku.hk

Abstract
Quantified class constraints have been proposed many years ago
1o raise the expressive power of type classes from Horn clauses
to the universal fragment of Hereditiary Harrop logic. Yet, while
it has been much asked for over the years, the feature was never
implemented or studied in depth. Instead, several workarounds
have been proposed, all of which are ultimately stopgap measures.
“This paper revisits the idea of quantified class constraints and
elaborates it into a practical language design. We show the merit
of quantified class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative specification of the type system as well ax a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
prototype implementation,

CCS Concepts + Theory of computation — Type structures.
+ Software and ity engineering —» Functional languages:
Keywords Haskell, type classes, type inference

ACM Reference Format:

Gent-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. 4. S. Olivelrs,
and Philip Wadler 2017, Quantified Class Constraints. In Iroceedings of 101k
ACH SIGILAN International Haskell Symposim, Oxfond, UK, September 7.8
207 (Haskell 7). 14 pags.

httpsy//doi org/10.1145/3122955.3122967

1 Introduction
Since Wadler and Blott [38] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell's comerstone features. Over the years type
classes have been the subject of many language extensions that
it expr v Exam-
ples of such extensions include: multi-parameter type classes [19]:
functional dependencies [18]; or associated types [3].

Sevetal of these implemented extensions were inspired by the
analogy between type classes and predicates in Horn clauses. Yet,
Hom clauses have their limitations. As a small side-product of

Permission to make digial or hard copies of 4l or part of this work for persanal or
et

on the first page. Copyrights for components of this werk ewned by others than ACM
st b b Abstracting with credi s permitied To copy otherwise o republish
1o port an servers

afee Request permussions from permisssansy#acm o,
Haskel 17, September 74, 217, Onford, UK
© 2017 Asscciation fox C

Philip Wadler
University of Edinburgh
Y

wadler@inf.ed.acuk

their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class consiraints. Their motivation
was o deal with higher-kinded types which seemed to require
instance declarations that were impossible to express in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class const it (Section 2):

1. they provide a natural way 1o express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of
focusing from Cocus [32], a caleulus for Scala-style implic-
s [26, 27), and adapts it 1o the Haskell setting, We account
for two notable differences: a global set of non-overlapping in-
stances and support for superclasses,

® We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

O Additional examples
O Inference algorithm

O Elaboration

172

Quantified Class Consiraints

Quantified Class Constraints

Gert-Jan Bottu Georgios Karachalias Tom Schrijvers
KU Leuven KU Leuven KU Leuven
Belgium Belgium Belgium
be georgi kuleuven be tom.schrijversG@es kuleuven be

Bruno C. d. S. Oliveira
University of Hong Kong

[s
brunogdes.hku.hk

Abstract
Quantified class constraints have been proposed many years ago
1o raise the expressive power of type classes from Horn clauses
to the universal fragment of Hereditiary Harrop logic. Yet, while
it has been much asked for over the years, the feature was never
implemented or studied in depth. Instead, several workarounds
have been proposed, all of which are ultimately stopgap measures.
“This paper revisits the idea of quantified class constraints and
elaborates it into a practical language design. We show the merit
of quantified class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative specification of the type system as well ax a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
prototype implementation,

CCS Concepts + Theory of computation — Type structures.
+ Software and ity engineering —» Functional languages:
Keywords Haskell, type classes, type inference

ACM Reference Format:

Gent-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. 4. S. Olivelrs,
and Philip Wadler 2017, Quantified Class Constraints. In Iroceedings of 101k
ACH SIGILAN International Haskell Symposim, Oxfond, UK, September 7.8
207 (Haskell 7). 14 pags.

httpsy//doi org/10.1145/3122955.3122967

1 Introduction
Since Wadler and Blott [38] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell's comerstone features. Over the years type
classes have been the subject of many language extensions that
it expr v Exam-
ples of such extensions include: multi-parameter type classes [19]:
functional dependencies [18]; or associated types [3].

Sevetal of these implemented extensions were inspired by the
analogy between type classes and predicates in Horn clauses. Yet,
Hom clauses have their limitations. As a small side-product of

Permission to make digial or hard copies of 4l or part of this work for persanal or
et

on the first page. Copyrights for components of this werk ewned by others than ACM
st b b Abstracting with credi s permitied To copy otherwise o republish
1o port an servers

afee Request permussions from permisssansy#acm o,
Haskel 17, September 74, 217, Onford, UK
© 2017 Asscciation fox C

Philip Wadler
University of Edinburgh
Y

wadler@inf.ed.acuk

their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class consiraints. Their motivation
was o deal with higher-kinded types which seemed to require
instance declarations that were impossible to express in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class const it (Section 2):

1. they provide a natural way 1o express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of
focusing from Cocus [32], a caleulus for Scala-style implic-
s [26, 27), and adapts it 1o the Haskell setting, We account
for two notable differences: a global set of non-overlapping in-
stances and support for superclasses,

® We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

O Additional examples
O Inference algorithm

O Elaboration

O https://github.com/gkaracha/quantcs-impl

173

Backiracking

class (E a => Ca) =>D
class (G a => Ca) => F

175

Backiracking

class (E a => Ca) =>D a » D a=>(E a=>C a)
F a

class (G a => C a) => Fa=>(Ga-=>C a)

176

Backiracking

class (E a => C a) =>
class (G a => C a) =>

Local : Da, F a, G a
Goal : C a

177

Backiracking

class (E a => C a) =>
class (G a => C a) =>

Local : Da, F a, G a
Goal : C a

178

Backiracking

class (E a => C a) =>
class (G a => C a) =>

Local : Da, F a, G a
Goal : C a

179

Backiracking

class (E a => C a) =>
class (G a => C a) =>

Local : Da, F a, G a
Goal : C a

180

Backiracking

class (E a => C a) =>
class (G a => C a) =>

Local : Da, F a, G a
Goal : C a

181

Backiracking

182

Backiracking

O Order

183

Backiracking

O Order

O Order definition
OSuperclasses
Olnstances

OSignatures
O GADT pattern matching

184

Backiracking

O Order

O Order definition
OSuperclasses
Olnstances
OSignatures
O GADT pattern matching

O Prediction

185

Backiracking

O Order

O Order definition
OSuperclasses
Olnstances
OSignatures

O GADT pattern matching
O Prediction

O Reject overlap

186

Backiracking - Monotonicity

PEC
P.C, E C,

187

Intermezzo:

Simulating Quantified Class Constraints 7

7 Valery Trifonov. 2003. Simulating Quantified Class Constraints 188

Intermezzo:

Simulating Quantified Class Constraints 7

O Longer & more complex code

7 Valery Trifonov. 2003. Simulating Quantified Class Constraints 189

Intermezzo:

Simulating Quantified Class Constraints 7

O Longer & more complex code
O Not generally applicable

7 Valery Trifonov. 2003. Simulating Quantified Class Constraints 190

Elaboration

191

Elaboration

O System F

192

Elaboration

O System F
O Dictionary passing style

193

Elaboration

= C ~ v

O System F
O Dictionary passing style

Constraint Elaboration

My T v v Hy O~ v
(CQ) (CV)
e TC' 7~ Topo v =, Va.C' ~ Ya.v
e O e C
«t U1 v Uq 2 MUY (C:>)

|—ct O]_:>O2WU1_>U2

194

Metatheory

195

Metatheory

O Type preservation

196

Metatheory

O Type preservation

O Equivalence Specification

197

Metatheory

O Type preservation
O Equivalence Specification

O Equivalence Specification & Algorithm

198

Metatheory

O Type preservation
O Equivalence Specification

O Equivalence Specification & Algorithm

199

Related Work

200

Related Work

O Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes

201

Related Work

O Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes

O Valery Trifonov. 2003. Simulating Quantified Class Constraints

202

Related Work

O Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes

O Valery Trifonov. 2003. Simulating Quantified Class Constraints

O Ralf Ldmmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class: Extensible
Generic Functions

203

Related Work

O Ralf Hinze and Simon Peyton Jones. 2000. Derivable Type Classes

@)

Valery Trifonov. 2003. Simulating Quantified Class Constraints

O Ralf Ldmmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate with Class: Extensible
Generic Functions

O Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. 2017. Cochis: Deterministic and
Coherent Implicits

204

