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Type Classes

instance Eq a => Eq [a] where » forall a. Eq a => Eq [a]

[] == [] = True
(hl:t1) == (h2:t2) = (h1l == h2) && (t1 == t2)
_ == = False
class Eq a => Ord a where » forall a. Ord a => Eqg a
(<=) :: a -> a -> Bool
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)
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Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)
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Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(=EC)
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Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

[Eq a, Show a, Eq a]. T = Show a I10)
=
[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(=EC)
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Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

Show a € [Eq a, Show a, Eq a]
[Eq a, Show a, Eq a]. T = Show a I10)
[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa
[Eqg a, Show a];T" E Show a

(SpecC)

(=EC)
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Typing: Ambiguous

Show a € [Eq a, Show a]
[Eq a, Show a].T" E Show a

(SpecC)

Show a € [Eq a, Show a, Eq a]

(SpecC)

[Eq a, Show a, Eq a]. T = Show a Eq a € [Eq a, Show a]

(=IC) (SpecC)

[Eq a, Show a];T E Eqa = Show a [Eq a,Show a];T E Eqa (SEC)
=

[Eq a,Show a]; 1" E Show a
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Typing: Focusing '°

O FEQw A
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Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
O QA
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Typing: Focusing '°

P:T |=[C] P,Ci;1 E [(7] P.I,b F [C]
P; T |: [C] — Cg] P; T |: [VbC]
CeP: 1, [CITEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
[0l EQw A
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Typing: Focusing '°

P:T |=[C] P,Ci 1 E [(;] P.I,b E [C]
: (=R) (YR)
P.I' =[C, = (5] P.I' = [Vb.C]
CeP: 1, [CITEOwA VCieA: P.1 E|[(]
(UR)
P;I' E [O]
Ol Q@ A
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Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClTEOWA VYC,eA: P E|[C]
(OR)
P E [0]
[0l EQw A
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Typing: Focusing '°

P:T = [C] P,Ci;I' E [(] P.T',b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
T [C] = Qw A [ [Cal EQ~ A
(=L)
[D[C = GlEQwA,C
L [[r/bIC1EQ A Tk
(VL) (QL)
[;[Vb.ClE QA O] FE Qe 108
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Typing: Focusing '°

P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P [Q]
[ QA [Cl E Qs A
(=L)
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P:T = [C] P,Ci 1 E [(;] P.I,b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
T [C] = Qw A [ [Cal EQ~ A
(=L)
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Typing: Focusing '°

P:T = [C] P,Ci;I' E [(] P.T',b E [C]
P.I' =[C, = (5] P.I' = [Vb.C]
CeP:1;[ClEOwA VCieA: P.1 E|[(]
(OR)
P;1I' E [O]
[ [Cl = Qw A [[Chl Qs A
(=L)
[D[C = GlEQwA,C
[ [[7/DIC1 E Q w A 'k, 7
(VL) (QL)
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P;T'|=C

SN \ 10 P:T E [C]
Typing: Focusing PTEC
PTE(C PCiTEIC] - PLHEI
P.T E[C| = (5] P.I' = [Vb.C]
CeP:T:[ClIEQ~A VCeA: P,TE[C]
(OR)
Pl E [Q]
[ [C] = Q~w A [IGlEQwA |
(=L)
[D[C = GlEQwA,C
L [[r/bICIEQwA Tk, T |
(VL) (OL)
[ [Vb.ClE QO ~ A [GIOIE Qv e 112
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P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci;I' E [(] (=R) P.T',b E [C] (VR)
P;F |: [Cl = Cz] P;F |: [VbC]
CeP:1;[ClTEOWA VYC,eA: P.I E|[C]
(OR)
P E [Q]
[ QA [Cl E Qs A
(=L)
IT[C = GlEQwA,C
[ [[7/DIC1 E Q » A 'k, 7
(VL) (QL)
[;[Vb.ClE Q ~ A IO FE Qv e 113
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P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci; 1 E [(C7] (=R) P.I,b E [C] (VR)
P; 1 |: [Cl = Cz] P T |: [VbC]
CeP: T;[C1EQ~A V(G eA: PTE[C] oR)
P.I' E [O]
O] | Qw4 [ (G E QA
(=L)
IT[C = GlEQwA,C
L [[r/b]C1E Q » A 'k, 7
(VL) (QL)
[ [Vb.ClEQ ~ A [GIOIE Qv e 114
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P;T'|=C

Typing: Focusing PTEC
P:T |= [C] P,Ci; 1 E [(C7] (=R) P.I,b E [C] (VR)
P; 1 |: [Cl = Cz] P T |: [VbC]
CeP: T;[C1EQ~A V(G eA: PTE[C] oR)
P T E [Q]
O] | Qw4 LG E QA
(=L)
IT[C = GlEQwA,C
[ ] ClFEOwA [k,
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O Unification
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Type Inference

O Backtracking a:P ke A ~ A | Constraint Solving Algorithm
O Unification

a.PE [C]l ~ A| Constraint Simplification

Olncremental

OElaborate into System F a:[Cl EQ~ A:0| Constraint Matching
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Type Inference

o.P |= [Vb.Eq b = Eq [b]] » (Vb. ? )

124



Type Inference

b;P | [Eqb = Eq[b]] » (Egb= ? )
o |= [Vb.Eq b = Eq[b]] ~ (Vb. ? )

(VR)
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Type Inference

b:P.Eqb |= [Eq[b]] » ?
b;P | [Eqb = Eq[b]] w (Egb= ? )
o.P |= [Vb.Eq b = Eq [b]] » (Vb. ? )

(=R)

(VR)

126



Type Inference

b:[Va.Eqa = Eqla]] E Eq[b]~ ? :7?
b:P,Eqb [ [Eq[b]] » ?

b:® |=[Eqb= Eq[b]] w» (Eqgb= ? )

o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(OR)

(=R)

(VR)
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Type Inference

b:|Eqa = Eqla]l F Eq[b] » ? ;7
b;&z.Eqaz}Eq[a]]th[b]w ? 7
b:P.Eqb [ [Eq[b]] » ?
b:® |=[Eqb= Eq[b]] w» (Eqgb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(VL)

(OR)

(=R)

(VR)
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Type Inference

b;[Eq [a]] |= Eq [b] ~> e; ?
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P,Eqb [ [Eq[b]] » ?
b:® |=[Eqb= Eq[b]] w» (Eqgb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] »> e ?
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b]~ ? :7?
b:P.Eqb |= [Eq[b]] »> ?
b:® |5 [Eqb = Eq[b]] w (Eqgb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b: [Eq [a]] - Eq [b] ~ #:0
b:[Ega = Eq|a]] F Eq[b] » ? ;?
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P.Eqb |= |Eq[D]] ~ ?
b:® |=Eqb = Eq[b]] v (Eqb= 7? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b: [Eq [a]] - Eq [b] ~ #0
b:[Eqa = Eq|a]] F Eq[b] ~ Eq b;0
b:[Va.Eqa = Eqla]] E Eq[b] » ? .7
b:P.Eqb |= |Eq[D]] ~ ?
b:P |=[Eqb = Eq[b]] » (Eqb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eq [a]] = Eq [b] > ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[b]] »> ?
b:® |5 [Eqb = Eq[b]] w (Eqgb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (VD. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b:|Eq [a]] & Eq [b] »> e: 0
b:[Eq a = Eq|a]] F Eq[b] »> Eqb; 0
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[b]] w> Eq b
b:P = [Eqb = Eq[b]] = (Egb= ? )
o.P |= [Vb.Eqb = Eq[b]] » (Vb. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] ~> ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[D]] ~ Eqb
b;P |=[Eqb = Eq[b]] » (Eqb = Eqb)
o.P |= [Vb.Eqb = Eq[b]] » (VD. ? )

(QL)

(=L)

(VL)

(OR)

(=R)

(VR)
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Type Inference

unify(b;a ~ b) =6 = [b/a]
b:[Eqlal] = Eq [b] ~> ;0
b;|Eq a = Eq|a]] F Eq [b] »> Eq b6
b:[Va.Eqa = Eq|a]] E Eq [b] » Eq b; 0
b:P.Eqb |= [Eq[D]] ~ Eqb
b;P |=[Eqb = Eq[b]] » (Eqb = Eqb)
.P |=|[Vb.Eqb = Eq|b]] » (Vb.Eqb = Eqb)

(QL)

(=L)

(VL)

(OR)
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o P [VYh.Eqb = Eqb] ~ ?
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Type Inference

b:PE=[Eqb = Eqb]~ ?
o:PE[Vb.Eqbh = Eqb] ~ ?

(YR)
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Type Inference

b;P,Eq b E [Eq D] ~» ?
bPE=[Eqb = Eqb]~ ?
o;P = [Vb.Eqb = Eqb]~ ?

(=R)

(YR)
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Type Inference

bi[Eq D) E Eq b~ 7?;?
b;P,Eq b E [Eq D] ~» ?
bPE=[Eqb = Eqb]~ ?
o:PE[Vb.Eqb = Eqb] ~ ?

(QR)

(=R)

(YR)
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Type Inference

unify(b;b ~b) =0 = ?
bi[Eqbl = Eqb~ 7,7
b;P,Eq b E [Eq D] ~» ?
b;PE[Egb= Eqb]~ ?
o;P = [Vb.Eqb = Eqb] ~ ?

(QL)

(QR)

(=R)

(YR)
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Type Inference

unify(b;b ~b)y=0=e
== (QL)
bi[Eqbl = Eqb~ 7,7
b;P,Eq b E [Eq b] ~ ?
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(QR)

(=R)

(YR)
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Type Inference

(b;b~b)y=0=e
bu";? (b]le)b e OH)
. > @
s L4 q hihd (OR)
b;P,Eq b [Eqb] ~» ?
(=R)
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(YR)

143



Type Inference

unify(b;b ~b)y=0=e
b;|[Eqgbl E Eqb ~> e e
b;P,Eq b E [Eq D] ~> e
== (R)
bPE=[Eqb = Eqb]~ ?

o P [VYh.Eqb = Eqb] ~ ?

(QL)

(QR)

(YR)
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Type Inference

unify(b;b ~b)y=0=e
b;|Eqbl = Eqgb ~ e;e
b;P,Eq b = [Eq D] ~> e
b;PE|Egb= Eqb] ~ e
o.PE=[VD.Eqb = Eqb] ~ ?

(QL)

(QR)

(=R)

(YR)
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Type Inference

unify(b;b ~b)y=0=e
b;|Eqbl = Eqgb ~ e;e
b;P,Eq b = [Eq D] ~> e
b;PE|Egb= Eqb] ~ e
o.PE[Vb.Eqb = Eq D] e

(QL)

(QR)

(=R)

(YR)
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Metatheory: Termination

O Resolution tree

O Node = godl
O Edge = applying axiom
O Norm
lall = 1
Ilt1 = 2|l = 1+ |zl + |72l
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Metatheory: Termination

O Resolution tree

O Node = godl
O Edge = applying axiom
O Norm
O Strictly decreasing -> no infinite paths ||a|| =1
It = 2l = 1+ ||;al + [|z2]]
O Superclass axiom: non increasing
O DAG

O Bounded number of superclass applications
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Metatheory: Coherence

O Non determinism
O Computational content <= instances
O Non overlapping instances
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Metatheory: Ambiguity

instance C g => D Int where ...

forall a.

O Haskell '98: All guantified variables should appear in the head

O QCC's:

unamb(C)

Unambiguity

i |t_.lnamb C

unamb(C)

UNAMB

C a => D Int
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Metatheory: Ambiguity

instance C g => D Int where ... forall a. C a => D Int

O Haskell '98: All guantified variables should appear in the head

O QCC's: unamb(C) | Unambiguity
o |t_.lnamb C
UNAMB
unamb(C)
a tnay C | Unambiguity
unamb(Cy)
a - fv(Q) E, a Knamb C a Kinamb CZ
= (QU) = (YU) = (=)
a Knamb Q a Kinamb Va.C a Kinamb Cl = CZ
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O Metatheory
O Quantification over Predicates

O Interaction with mainstream GHC features
O Coercions problem !

1 hitps://ghc.haskell.org/trac/ghc/ticket/9123 170
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Abstract

Quantified class constraints have been proposed many years ago
1o raise the expressive power of type classes from Horn clauses
to the universal fragment of Hereditiary Harrop logic. Yet, while
it has been much asked for over the years, the feature was never

University of Edinburgh
Y
wadler@int.ed ac.uk

their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class constraints. Their motivation
was 1o deal with higher-kinded types which seemed to require

implemented or studied in depth. Instead, several
have been proposed, all of which are ultimately stopgap measures.

“This paper revisits the idea of quantified class constraints and
elaborates it into a practical language design. We show the merit
of quantified class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative specification of the type system as well ax a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
prototype implementation,
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1 Introduction
Since Wadler and Blott [33] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell's comerstone features. Over the years type
classes have been the subject of many language extensions that
it expr v Exam-
ples of such extensions include: multi-parameter type classes [19]:
functional dependencies [18]; or associated types [3].
Sevetal of these implemented extensions were inspired by the
analogy between type classes and predicates in Horn clauses. Yet,
Hom clauses have their limitations. As a small side-product of
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that were impos press in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class constraints (Section 2):

1. they provide a natural way to express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of

g from Cocais [32], a calculus for Scala-style implic-

s [26, 27), and adapts it 1o the Haskell setting, We account

for two notable differences: a global set of non-overlapping in-

stances and support for superclasses,

« We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).
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1o raise the expressive power of type classes from Horn clauses
to the universal fragment of Hereditiary Harrop logic. Yet, while
it has been much asked for over the years, the feature was never
implemented or studied in depth. Instead, several workarounds
have been proposed, all of which are ultimately stopgap measures.
“This paper revisits the idea of quantified class constraints and
elaborates it into a practical language design. We show the merit
of quantified class constraints in terms of more expressive modeling
and in terms of terminating type class resolution. In addition, we
provide a declarative specification of the type system as well ax a
type inference algorithm that elaborates into System F. Moreover,
we discuss termination conditions of our system and also provide a
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1 Introduction
Since Wadler and Blott [38] originally proposed type classes as a
means to make adhoc polymorphism less adhoc, the feature has
become one of Haskell's comerstone features. Over the years type
classes have been the subject of many language extensions that
it expr v Exam-
ples of such extensions include: multi-parameter type classes [19]:
functional dependencies [18]; or associated types [3].
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their work on derivable type classes, Hinze and Peyton Jones [12]
have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class consiraints. Their motivation
was o deal with higher-kinded types which seemed to require
instance declarations that were impossible to express in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class const it (Section 2):

1. they provide a natural way 1o express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of
focusing from Cocus [32], a caleulus for Scala-style implic-
s [26, 27), and adapts it 1o the Haskell setting, We account
for two notable differences: a global set of non-overlapping in-
stances and support for superclasses,

® We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

O Additional examples
O Inference algorithm

O Elaboration
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have proposed 1o raise the expressive power of type classes to
essentially the universal fragment of Hereditiary Harrop logic [9]
with what they call quantified class consiraints. Their motivation
was o deal with higher-kinded types which seemed to require
instance declarations that were impossible to express in the type-
class system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on
quantified class constraints. Later, Limmel and Peyton Jones [21]
found a workaround for the particular problem of the derivable
type classes work that did not involve quantified class constraints,
Nevertheless the idea of quantified class constraints has whet the
appetite of many researchers and developers. GHC ticket #2893’
requesting for quantified class constraints, was opened in 2008
and is still open today. Commenting on this ticket in 2009, Peyton
Jones states that ‘their lack is clearly a wart, and one that may
become more pressing”, yet clarifies in 2014 that “(the trouble is that
Idon't know how to do type inference in the presence of polymorphic
constratnts.” In 2010, 10 years after the original idea, Hinze [10]
rues that the feature has not been implemented yet, As recently as
2016, Chauhan et al. [4] regret that “Haskell does not allow the use
of universally quantified constraints” and now in 2017 Spivey [31]
has to use pseudo-Haskell when modeling with quantified class
constraints. While vari have been d
are used in practice (20, 31, 36], none has stopped the clamor for
proper quantified class constraints.

‘This paper finally elaborates the original idea of quantified class
constraints into a fully fledged Language design.

Specifically, the contributions of this paper are:

© We provide an overview of the two main advantages of quanti-
fled class const it (Section 2):

1. they provide a natural way 1o express more of a type class's

specification, and

2. they enable terminating type class resolution for a larger class

of applications,

« We elaborate the type system sketch of Hinze and Peyton Jones
[12] for quantified type class constraints into a full-fledged for-
malization (Section 3). Our formalization borrows the idea of
focusing from Cocus [32], a caleulus for Scala-style implic-
s [26, 27), and adapts it 1o the Haskell setting, We account
for two notable differences: a global set of non-overlapping in-
stances and support for superclasses,

® We present a type inference algorithm that conservatively ex-
tends that of Haskell 98 (Section 4) and comes with a dictionary-
passing elaboration into System F (Section 5).

O Additional examples
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O Elaboration
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O Longer & more complex code
O Not generally applicable
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