KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Implicit Code Generation for
Polymorphism

Gert-Jan Bottu

Supervisor: Dissertation presented in partial
Prof. dr. ir. T. Schrijvers fulfillment of the requirements for the
degree of Doctor of Engineering

Science (PhD): Computer Science

January 2022

Implicit Code Generation for Polymorphism

Gert-Jan BOTTU

Examination committee:
Prof. dr. ir. H. Van Brussel, chair
Prof. dr. ir. T. Schrijvers, supervisor
Prof. dr. ir. G. Janssens
Prof. dr. ir. F. Piessens
Dr. R. Eisenberg
(Tweag Software Innovation Lab, France)
Dr. W. Swierstra
(Universiteit Utrecht, Netherlands)

January 2022

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

© 2022 KU Leuven — Faculty of Engineering Science
Uitgegeven in eigen beheer, Gert-Jan Bottu, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

First and foremost, I would like to thank my supervisor, Tom Schrijvers, who
offered me the opportunity to start this work, the advice and teaching to guide
me through this work, and the support and drive to do better to finish this work.
Without him, none of this would have been possible, for which I’'m incredibly
grateful.

Secondly, I want to thank George Karachalias, who introduced me to the
wonderful world of type theory. His unrelenting patience and mentorship taught
me so much about science, about work and about life in general. Against better
judgement, he even got me started in JavaScript development. He not only
made this thesis happen, but made me the person I am today.

Furthermore, I would like to thank the jury for reading this work, for providing
their insightful feedback, and for many educating discussions, both during the
defense of this thesis and before, and hopefully afterwards as well.

My thanks also goes out to my collegues: Alexander, Amr, Birthe, Cesar,
George, Klara, Koen, Ningning, Roger, Ruben and Steven. Together, we made
the office both a fun and enlightening place to be, not to mention being in a
constant state of amazement. Furthermore, I would like to thank my more
junior collegues for our many interesting discussions and offering me the ability
to pass on what I learned: Elias, Francisco, Jelle, Jo-Thijs, Lena, Reinert, Rene
and Thomas.

My gratitude goes out to the incredible teams at Digital Asset and Tweag.io,
who thaught me the real world applications behind the theory. Their knowledge
and enthousiasm got me excited for working in industry. A special mention for
Richard Eisenberg, for taking the time to introduce me to GHC development.

i PREFACE

Of course, I'd like to thank my friends, family and parents for the incredibly
important role they play in my life, and for which I'm eternally grateful. None
of this would be possible without them. And last but not least, I'm grateful to
Ruben for his love, patience and support. You're the best!

Gert-Jan
January 2022

Abstract

As software keeps growing in size and complexity, more sophisticated
programming languages are needed to keep software development manageable.
One important aspect in a capable programming language is its type system.
A sufficiently powerful static type system can not only reduce bugs, but also
implicitly generate common boilerplate code. This thesis improves upon on
two forms of this implicit type-directed code generation, both in the context of
polymorphism: parametric polymorphism and type classes.

The goal of this work is to improve the current state of the art in polymorphism,
and we tackle this in three complementary ways:

Firstly, we investigate parametric polymorphism in Haskell by evaluating two
design decisions related to type instantiation. For this, we introduce the concept
of stability as a way of making these decisions. Stability is a measure of whether
the meaning of a program alters under small, seemingly innocuous changes
in the code (e.g., inlining). We define a type system family, which can be
materialised to four different approaches of type instantiation. After defining 11
different stability related properties, and formally verifying them against every
variant of the type system family, we conclude that the most stable approach
is lazy (instantiate a polytype only when absolutely necessary) and shallow
(instantiate only top-level type variables, not variables that appear after explicit
arguments).

Secondly, we increase confidence in the type class resolution mechanism, the
implicit type-directed code generation used by Haskell for function overloading.
While type class resolution is generally nondeterministic (both in Haskell and
other languages like Mercury and PureScript), we prove that it still behaves
predictably. Indeed, multiple ways can exist to satisfy a wanted constraint in
terms of global instances and locally given constraints. However, the property
of coherence guarantees that every possible outcome of this nondeterministic
resolution process behaves indistinguishably from the others in practice. Even

iv ABSTRACT

though coherence is generally assumed to hold for type class resolution, as far
as we know, this work is the first to provide a formal proof of this property
in the presence of sources of nondeterminism, like superclasses and flexible
contexts. The proof is non-trivial because the semantics elaborates resolution
into a target language where different elaborations can be distinguished by
contexts that do not have a source language counterpart. Inspired by the
notion of full abstraction we present a two-step strategy that first elaborates
nondeterministically into an intermediate language that preserves contextual
equivalence, and then deterministically elaborates from there into the target
language. We use an approach based on logical relations to establish contextual
equivalence and thus coherence for the first step of elaboration, while the second
step’s determinism straightforwardly preserves this coherence property.

Thirdly, we increase expressivity of type classes from Horn clauses to the
universal fragment of Hereditary Harrop logic. In fact, quantified class
constraints have been proposed many years ago for exactly this purpose.
Yet, despite being widely asked for over the years, besides a number of
stopgap workarounds, quantified constraints had never been formally studied or
implemented. We elaborate the idea into a practical language design, and provide
a declarative specification of the type system. Furthermore, we design a type
inference algorithm that elaborates into System F. While not a direct mapping,
this work has provided the necessary kick-start for a GHC implementation
of quantified constraints. Finally, we extend the aforementioned coherence
proof with quantified class constraints, a non-trivial extension, to show the
adaptability of the proof.

In conclusion, we have improved the state of the art of polymorphism, and its
type-directed code generation aspects in particular. We have increased (1) the
stability of parametric polymorphism, (2) faith in the correctness of type class
resolution by formally proving it coherent, and (3) the expressivity of type
classes by adopting quantified class constraints. This clears the way for more
wide-spread adoption of these features.

Beknopte samenvatting

Met almaar groter en complexer wordende softwareprojecten neemt het belang
van geavanceerde programmeertalen toe om de ontwikkeling van software
beheersbaar te houden. Een belangrijk aspect van een degelijke programmeertaal
is het typesysteem. Een voldoende krachtig statisch typesysteem kan niet enkel
fouten vermijden, maar kan ook impliciet veelvoorkomende code genereren.
Deze thesis verbetert twee vormen van impliciete type-gestuurde codegeneratie,
beide in het kader van polymorfisme: parametrisch polymorfisme en typeklassen.

Het doel van dit werk is om de huidige staat van polymorfisme te verbeteren.
Dit bereiken we op drie complementaire manieren:

Ten eerste onderzoeken we parametrisch polymorfisme in Haskell door twee
ontwerpkeuzes gerelateerd aan type-instantiatie te evalueren. We introduceren
hiervoor het concept stabiliteit als een manier om deze beslissingen te maken.
Stabiliteit is een maat van hoe de betekenis van een programma verandert onder
kleine, schijnbaar onschuldige aanpassingen in de code (e.g., het inlijnen van een
variabele). We construeren een familie van typesystemen, waarvan de varianten
vier verschillende vormen van type-instantiatie gebruiken. We definiéren 11
verschillende stabiliteitgerelateerde eigenschappen, en verifiéren ze tegen elke
variant van onze familie van typesystemen. Onze conclusie is dat lui (een type
enkel instantiéren wanneer dit absoluut noodzakelijk is) en oppervlakkig (enkel
de bovenste laag variabelen instantiéren, dus geen variabelen die voorkomen na
expliciete argumenten) instantiéren het meest stabiel is.

Ten tweede verhogen we het vertrouwen in het resolutiemechanisme van
typeklassen, de impliciete type-gestuurde codegeneratie die door Haskell gebruikt
wordt voor het overladen van functies. Ondanks dat typeklasseresolutie in
het algemeen niet-deterministisch verloopt (zowel in Haskell als in andere
talen zoals Mercury en PureScript), bewijzen we dat het zich wel steeds
voorspelbaar gedraagt. Inderdaad, er kunnen meerdere manieren bestaan om
een gevraagde constraint op te lossen in functie van globale instanties en lokale

vi BEKNOPTE SAMENVATTING

gegeven constraints. Desondanks garandeert de coherentie-eigenschap dat elke
mogelijke uitkomst van dit niet-deterministische proces zich in de praktijk niet
te onderscheiden gedraagt van de anderen. Hoewel er algemeen aangenomen
wordt dat coherentie geldt voor typeklasseresolutie, is dit werk—voor zover we
weten—het eerste dat deze eigenschap formeel bewijst in het bijzijn van bronnen
van niet-determinisme zoals superklassen en flexibele contexten. Het bewijs is
niet-triviaal omdat de semantiek resolutie vertaalt naar een doeltaal waar een
onderscheid gemaakt kan worden tussen verschillende vertalingen in contexten
die geen starttaal wederhelft hebben. Gebaseerd op de notie van volledige
abstractie presenteren we een twee-staps strategie welke eerst op een niet-
deterministische manier vertaalt naar een intermediaire taal, waar contextuele
equivalentie gerespecteerd wordt, en vervolgens op een deterministische manier
van daar naar de doeltaal. We gebruiken een methode gebaseerd op logische
relaties om een contextuele equivalentie te bepalen. Van hieruit kunnen we
coherentie van de eerste stap in de vertaling besluiten. Aangezien de tweede
stap deterministisch is, behoudt deze triviaal de coherentie-eigenschap.

Ten derde verbeteren we de expressiviteit van typeklassen van Horn clausules
tot het universele fragment van Hereditary Harrop logica. In feite zijn
gekwantificeerde klasseconstraints al jaren geleden voorgesteld voor deze reden.
Maar ondanks de grote aanhoudende vraag zijn gekwantificeerde constraints,
met uitzondering van een aantal gedeeltelijke noodoplossingen, nooit formeel
bestudeerd of geimplementeerd. We breiden dit idee uit tot een praktisch
taalontwerp, en presenteren een declaratieve specificatie van het typesysteem.
Vervolgens ontwerpen we een type interferentie algoritme dat vertaalt naar
System F. Hoewel het geen een-op-een mapping betreft, heeft dit werk
het startsein gegeven voor een GHC implementatie van gekwantificeerde
constraints. Uiteindelijk breiden we het eerder genoemd coherentiebewijs uit
met gekwantificeerde klasseconstraints—een niet triviale extensie—en tonen
hiermee de aanpasbaarheid van dit bewijs aan.

We concluderen dat we de staat van polymorfisme, en de type-gestuurde
codegeneratie aspecten specifiek, verbeterd hebben op drie manieren. We
hebben (1) de stabiliteit van parametrisch polymorfisme verbeterd, (2) het
vertrouwen in de correctheid van typeklasseresolutie verhoogd door het formeel
coherent te bewijzen, en (3) de expressiviteit van typeklassen verbeterd door
gekwantificeerde klasseconstraints toe te voegen. Dit maakt de weg vrij voor
een meer wijdverspreid gebruik van deze functionaliteit.

Contents

Abstract iii
Beknopte samenvatting v
List of Symbols vii
Contents vii
List of Figures xiii
1 Introduction 1
1.1 Haskell 2
1.2 Aimof the Thesis. 3

1.3 Thesis Overview i 4
1.3.1 Part I: Parametric Polymorphism 4

1.3.2 Part II: Ad-Hoc Polymorphism 5

2 Laying the Foundations 7
2.1 Programming Languages 7
2.2 Dynamic Semantics Lo o 8
2.3 Static Semantics Lo 8
2.4 Meta-Theory e 9

I Parametric Polymorphism 11
3 Polymorphic Types 12
3.1 SystemF 12
3.2 Hindley Milner 13

4 Type Instantiation 15

viii CONTENTS
4.1 Imtroduction 15
4.2 Instantiation in GHC 16

4.2.1 Deep vs. Shallow Instantiation 17
4.2.2 Eager vs. Lazy Instantiation. 18
5 Meta Theory: Stability 19
5.1 Stability 19
5.1.1 Stability 25
5.2 The Mixed Polymorphic A-Calculus 26
5.2.1 Syntax 27
5.2.2 Type system overview 29
5.2.3 Instantiation and Skolemisation 33
5.3 Ewvaluation. o 35
5.3.1 Contextual Equivalence 35
5.3.2 Properties L Lo 37
5.3.3 Conclusion 0 40
5.4 Instantiation in GHC, 40
5.4.1 Eagerness 40
54.2 Depth 42
5.4.3 The situation today: Quick Look impredicativity has arrived 42
5.5 Instabilities around instantiation beyond Haskell 42
5.5.1 Explicit Instantiation 43
552 Idris L 43
553 Agda. 43
5.5.4 Explicit Abstraction 44
5.5.5 Implicit Generalisation 46
5.6 Example of Implicit Generalisation in Idris 48
5.7 Related Worko 49
5.8 Scientific Qutput 49

II Ad-hoc Polymorphism 51

6 Type Classes 52
6.1 Introduction. 53
6.2 Overview 53

6.2.1 Dictionary-Passing Elaboration 53
6.2.2 Alternatives 56
6.3 Source Language A\pco 56
6.4 Target Language Fii oL oo 63
6.4.1 Elaboration from Aprc to Fyy ... Lo 63

7 Meta Theory: Coherence 67

CONTENTS ix

7.1 Introduction. 67
7.2 OvVerview e 70
7.2.1 Dictionary-Passing Elaboration 70
7.2.2 Nondeterminism and Coherence. 70
7.2.3 Contextual Difference 71
7.2.4 Our Approach to Proving Coherence 72

7.3 Coherence 74
7.3.1 Contextual Equivalence 74
7.3.2 Coherence 75

7.4 Intermediate Language Fp 75
7.4.1 Elaboration from Aprc to Fp 81
7.4.2 Elaboration from Fp to Fyy oL 84
7.4.3 Elaboration Decomposition 85

7.5 Coherence Revisited 85
7.5.1 Coherent Elaboration from Aprc to Fp 86
7.5.2 Deterministic Elaboration from Fp to /7y 91

7.6 Discussion of Possible Extensions 93
7.7 Related Work 95
7.8 Scientific Output 96
8 Extension: Quantified Constraints 99
8.1 Imtroduction 99
8.2 Motivation L 101
8.2.1 Precise and Succinct Specifications 101
8.2.2 Terminating Corecursive Resolution 103
8.2.3 Summary 104

8.3 Declarative Type System 105
83.1 Syntax 105
8.3.2 The Type System 107
8.3.3 Constraint Entailment 109
8.3.4 Remaining Nondeterminism 111

8.4 Typelnference 113
8.4.1 Preliminaries 114

8.4.2 Constraint Generation For Terms 115
8.4.3 Constraint Solving 115
8.4.4 Checking Declarations 120
8.4.5 Program Typing 121

8.5 Translation to System F L. 121
8.5.1 Target Language: System F 121
8.5.2 Elaboration of Types & Constraints 122
8.5.3 Elaboration of Terms. 122
8.5.4 Dictionary Construction 123

8.5.5 Declaration Elaboration 124

8.6 Termination of Resolution
8.7 Related Work
8.8 Quantified Constraints in GHC
8.9 Scientific Output

9 Meta Theory: Coherence for Quantified Constraints

9.1 Imtroduction.
9.2 Calculus Updates
921 MpcUpdates, .
9.2.2 Example Derivation
923 Fg Updates
9.2.4 Example Translation
9.3 Meta-Theory
931 Fg TypeSafety
9.3.2 Strong Normalisation for Fijm
9.3.3 Elaboration from A\Fs to Fiy
9.3.4 Elaboration from F5 to /v
9.4 Coherence
9.4.1 Logical Relations
9.4.2 Coherence Theorem Updates
9.5 Conclusion

10 Conclusion

10.1 Parametric Polymorphism
10.2 Ad-Hoc Polymorphism

A Additional Relations

A.1 MPLC Additional Definitions
A.2 MPLC Core Language Definitions

A.2.1 Translation from the Mixed Polymorphic A-calculus

A.3 A\rc Additional Definitions
A3l Synmtax
A.3.2 Apc Judgments and Elaboration
A.3.3 Arc Judgments and Elaboration through Fp

A4 M7 Declarative Type System Additional Judgments
A.4.1 Well-formedness of Types & Constraints
A4.2 Program Typing
A.4.3 Elaboration of Programs

A5 A{s Additional Definitions
AB51 Syntax
A5.2 A{- Judgments and Elaboration
A5.3 M{o Judgments and Elaboration through F5
A.5.4 Unification Algorithm

CONTENTS

CONTENTS xi

A.6 Fp Additional Definitions 209
A6.1 Syntax 209
A.6.2 Fp Judgments and Elaboration 210

A7 F5 Additional Definitions 0oL, 216
ATl Syntax 216
A.7.2 Fp Judgments and Elaboration 217

A8 Additional Definitions 224
AR81 Syntax 224
A8.2 Judgments oo 225

A.9 System F with Data Types Definitions 227
A91 Term Typing 228
A.9.2 Well-formedness of Types 228
A.9.3 Program Typing 228
A.9.4 Value Binding Typing 229
A.9.5 Datatype Declaration Typing 229
A.9.6 Call-by-name Operational Semantics 229

B Stability Proofs 231

B.1 Let-Inlining and Extraction 231

B.2 Contextual Equivalence 234

B.3 Let-Inlining and Extraction, Continued 238

B.4 Type Signatures 240

B.5 Pattern Inlining and Extraction 247

B.6 Single vs. Multiple Equations 250

B.7 m-expansiono o 251

C Coherence Proofs 253

C.1 Logical Relations 253
C.1.1 Dictionary Relation 253
C.1.2 Expression Relation 255
C.1.3 Environment Relation 257

C.2 Strong Normalization Relations 258
C.2.1 Dictionary Relation 259
C.2.2 Expression Relation 259

C.3 Equivalence Relations 261
C.3.1 Kleene Equivalence Relations 261
C.3.2 Contextual Equivalence Relations 261

C4 Mic Theorems 262
C.4.1 Conjectures v oot i i 262
C42 Lemmas 263
C.4.3 Typing Preservation 268

C.5 Fp Theorems o 291

C.5.1 Conjectures v v v v v 291

xii

CONTENTS

C.6
C.7

C.8

C5.2 Lemmas 293
C.5.3 TypeSafety 296
C.5.4 Strong Normalization 307
Elaboration Equivalence Theorems 329
Coherence Theorems 354
C.7.1 Compatibility Lemmas 354
C.7.2 Helper Theorems 378
C.7.3 Partial Coherence Theorems. 412
C.7.4 Main Coherence Theorems 428
Fp-to- Theorems 434
C.81 Lemmas 434
C.82 Soundness 437
C.8.3 Determinism 448
C.8.4 Semantic Preservation 458

Bibliography 471

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

5.1
5.2
5.3

5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6

Grammar for the A calculus
Operational Semantics for the A calculus
Typing Rules for the STLC
Grammar for the STLC, Extension of Figure 2.1

Grammar for System F, Extension of Figure 2.4
Typing Rules for System F, Extension of Figure 2.3
Grammar for HM, Extension of Figure 2.4
Typing Rules for HM, Extension of Figure 2.3

Mixed Polymorphic A-Calculus (MPLC) Syntax
Term Typing for Mixed Polymorphic A-Calculus
Argument and Declaration Typing for Mixed Polymorphic \-
Calculus
Pattern Typing for Mixed Polymorphic A-Calculus
Type Instantiation and Skolemisation

Overview of the different calculi of Part IT.
ATC SYmbaX
Arc typing, selected rules L.
Closure and unambiguity relations
Arc constraint entailment
Arc instance declaration typingo L
Target language syntax oL

The different calculi with elaborations
Fp, selected syntax Lo
Fp typing and operational semantics, selected rules.
Fp environment well-formedness, selected rules
Fp dictionary typing
Arc typing with elaboration to Fp, selected rules

xiii

Xiv

LIST OF FIGURES

7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1

9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

B.1
B.2

C1
C.2
C.3
C4

Arc constraint entailment with elaboration to fF’p 82
Source Syntax 105
Declarative Type System (Selected Rules) 106
Tractable Constraint Entailment 110
Unambiguity 113
Constraint Generation for Terms with Elaboration 114
Constraint Entailment with Dictionary Construction 117
Declaration Elaboration 118
Subsumption Rule o0 120
System F Syntax L 121
Updated Grammar for AT with Type Annotations, Extension

of Figure 8.1 L 135
Constraint resolution for A\ L 136
Example Constraint Entailment Derivation 139
Grammar for F7, extension of Figure 7.2 140
Dictionary typing relation for /57 141
Operational Semantics for F5, Extension of Figure 7.3 142
Strong Normalisation Relation for Dictionaries 144
Updated Logical Relations for Dictionaries 147
Updated Logical Relations for Expressions, Extension of Defini-

tionsGand 7 148
Relation dependencieso 232
Counting Explicit Arguments 251
Dependency graph for Typing Preservation Theorems 269
Dependency graph for Strong Normalization Theorems 316
Dependency graph for Equivalence Theorems 329

Dependency graph for Coherence Theorems 409

Chapter 1

Introduction

“He was determined to discover
the underlying logic behind the
universe. Which was going to be
hard, because there wasn’t one.”

Mort
Terry Pratchett

The exponential growth of software development, that we have seen over the past
few decades, is posing ever more complex problems for software developers [57].
The market demands increasingly complicated software, with more features,
more performance, fewer bugs and with minimal development cost and time.
As an example, consider the on-board software on space missions, which has
steadily increased by a factor of 10, every 10 years, for the past 50 years [2].

Increasing the scope of software complexity that programmers can effectively
manage, can be partly achieved by improving the programming languages and
the tools at their disposal.

Static Typing One well-established approach of making software development
more manageable, is through the use of a static type system. Conceptually, a
type is a property of an expression or value, that denotes how the programmer
intends to use this object. For example the value 42 (an Integer) supports
different operations than the text "hello world" (a String). The type system
consists of a set of judgements assigning types to expressions, and restricting
which operations are allowed on which expressions. Static type systems detect

2 INTRODUCTION

certain kinds of errors early on, at compile time. For this reason, they are used
extensively in many mainstream languages like C#, C++ and Java. Empirical
research [78] shows a noticable, yet modest effect of type systems on the total
number of bugs, but more large-scale studies are needed to measure their impact.

Implicit Type-Directed Code Generation More recently, type systems have
expanded their scope beyond reducing the number of bugs, and into increasing
programmer productivity by automatically generating parts of the software. In
particular, repetitive code (so-called boilerplate) whose definition depends on
the structure of the types, can often be automatically generated. This text
focusses on such code that is generated implicitly at compile time, invisible to
the programmer.

Polymorphism Since the early days of computer programming, developers
have been looking for ways to stop reinventing the wheel and to reuse their
existing code. For example, generic programming [63] was introduced as a
way of reusing implementations. This text focusses on polymorphism, where a
function can be reused on arguments of different types. As customary [90], we
differentiate between two different forms of polymorphism: Firstly, parametric
polymorphism allows a function to abstract over any type, and behave uniformly,
independently of its type. A common example is computing the length of a list,
which acts uniformly over lists of Integers, and over lists of Strings. Secondly,
ad-hoc polymorphism allows a function to differentiate its behaviour, depending
on the type of its arguments. A common example is computing the equality of
two objects.

Stability We consider a language stable when it is robust to small, seeminingly-
innocuous changes to the program code. In other words, applying common
code transformations should not have a dramatic impact on the meaning of the
program. This property turns out to be an import metric in languages with a
mix of both implicit and explicit features. Chapter 5 explains the concept in
more detail.

1.1 Haskell

This thesis text largely focusses on Haskell, as it features a state-of-the-art,
powerful static type system, and takes a pioneering role with new compiler and
type system features. Furthermore, Haskell features advanced systems for both
parametric and ad-hoc polymorphism (through type classes).

AIM OF THE THESIS 3

Parametric Polymorphism Consider the function pair::V a b.a — b — (a, b)
which takes two arguments and constructs a tuple containing both. The
implementation is straightforward pair x y = (x, y). Note that this function is
parametrically polymorphic as it works on any two arguments, of any two types:
pair performs the exact same operation in both pair 5 >x’ and pair True id.

Ad-Hoc Polymorphism As a second example, consider a function show ::
V a.a — String, which serialises an argument into a String value. As serialisation
depends on the type of its argument (e.g., serializing an Integer is quite different
from serializing a boolean), we need to provide several distinct implementations.
We do this using Haskells type classes, as follows:

class Show a where
show :: a — String

instance Show Bool where
show True = "True"
show False = "False"

instance Show Int where
show = showlnt

Note that—unlike with parametric polymorphism, which operates on any type—
we have now only defined show for a specific number of types.

While both parametric and ad-hoc polymorphism features in Haskell are used
in academia and industry alike, the meta-theory behind these features—both in
terms of correctness and stability—can certainly be explored further.

1.2 Aim of the Thesis

The goal of this thesis is to improve the current state of the art in polymorphism.
In particular, we aim to answer the following research questions:

Question 1: How can we improve the stability of polymorphism
features?

Question 2: How can we increase the expressivity of polymorphism
features?

Question 3: How can we increase confidence in implicit program-
ming features for polymorphism?

We answer these questions by formally evaluating and proving important
correctness and stability properties of implicit programming features. Concretely,

4 INTRODUCTION

Part I of the thesis focusses on stability properties of parametric polymorphism in
Haskell. Part IT focusses on a property of type classes, related to its predictability
and non-ambiguity. This increases confidence in this form of implicit code
generation for mission-critical software, and consequently may increase its usage
in industry. Furthermore, the thesis introduces a number of new features as a
case study of the aforementioned evaluations.

While the examples and use cases presented in this thesis are in the Haskell
language, we focus on the evaluation of more general properties. We are thus
confident that the results from this work are more broadly applicable.

1.3 Thesis Overview

This thesis consists of two main parts: Parametric Polymorphism and Ad-Hoc
Polymorphism.

1.3.1 Part I: Parametric Polymorphism

The first part is concerned with the stability of parametric polymorphism in
Haskell. We formalize the concept of stability as a way of evaluating user-facing
design decisions. We then apply it to improve type instantiation with both
implicit and explicit arguments.

The material found in this part is largely taken from the following publication:

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking
stability by being lazy and shallow: lazy and shallow instantiation
is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 85-97.
DOTLhttps://doi.org/10.1145/3471874.3472985

Chapters 2, 3 and 4 provide the necessary background knowledge. Chapter 5
introduces and evaluates the concept of stability. The formal proofs can be
found in Appendix B.

THESIS OVERVIEW 5

1.3.2 Part Il: Ad-Hoc Polymorphism

The second part focuses on the concept of coherence as a correctness and
predictability property of type classes in Haskell. Furthermore, we discuss
quantified class constraints as a case study.

The material found in this part is partially taken from the following publications:

Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom
Schrijvers. 2019. Coherence of type class resolution. Proc. ACM
Program. Lang. 3, ICFP, Article 91 (August 2019), 28 pages.
DOIhttps://doi.org/10.1145/3341695

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno
C. d. S. Oliveira, and Philip Wadler. 2017. Quantified
class constraints. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell (Haskell 2017). Associa-
tion for Computing Machinery, New York, NY, USA, 148-161.
DOTI:https://doi.org/10.1145/3122955.3122967

Chapter 6 provides the necessary background knowledge on ad-hoc polymor-
phism in Haskell. Chapter 7 introduces and evaluates the concept of coherence.
Quantified class constraints are introduced in Chapter 8. Chapter 9 evaluates
the impact of this extension on our proof of coherence. The adapted proof of
coherence with quantified constraints can be found in Appendix C. The specific
contributions of the author of this thesis are enumerated at the end of each
chapter.

Chapter 2

Laying the Foundations

“Prepare to be amazed!”

George Karachalias

This chapter introduces a number of concepts used extensively throughout the
thesis. Note that this text only provides a very brief taste of these fascinating
topics. If you’re interested to explore them in more detail, I heartily recommend
the bible of programming languages: Pierce [75]. Alternatively, if you already
have a basis in programming language and type theory, you can freely skip
ahead to Chapter 4.

2.1 Programming Languages

While programmable computers have only existed for about 80 years, a plethora
of different programming languages exist. These range dramatically in their level
of expressiveness (general purpose languages vs. domain specific languages), level
of abstraction (high level vs. low level languages), verification of programmer
code (static typing vs. dynamic types vs. ...) etc. When working with
programming languages, and even more so when investigating the meta-theory
of these languages, it is often useful to have a formal specification.

The first step in constructing a formal specification for a programming language
is to describe a grammar for the possible syntactical constructs. For instance,
Figure 2.1 shows an inductive definition for a simple programming language (the

8 LAYING THE FOUNDATIONS

e u= x|ejex|Axe Ezpression

Figure 2.1: Grammar for the A calculus

(Operational Semantics)

TMAPP TMAPPABS

l
l

Figure 2.2: Operational Semantics for the A calculus

untyped A calculus). Expressions e in this language consist of variables—which,
throughout this text, we will denote with x and y—, applications e; es and
abstractions Az.e.

2.2 Dynamic Semantics

Being able to execute programs is a crucial aspect of any programming language.
Computation in functional programming languages can often be represented
using S-reduction: (Ax.eq) es ~ [ea/x]e;. This states that applying a function
Az.e; to an expression es is equivalent to replacing every occurrence of x in
e1 with es. For example, Figure 2.2 shows the operational semantics for the
toy language showcased above. This example describes call-by-name semantics,
where evaluation is postponed for as long as possible.

2.3 Static Semantics

As introduced in Chapter 1, static type systems are used extensively as a way
of avoiding computer bugs. A sufficiently powerful type system can differentiate
between a 'valid’ or well-typed program, and a program that might potentially
get stuck or crash. For illustration purposes, Figure 2.3 shows a declarative
specification of a type system for the A-calculus described in the previous section.
This system is known as the Simply Typed A-Calculus (STLC).

The relation I' k5, e : 7 denotes that, under typing environment I', the expression
e is well-formed and is assigned the type 7. A type 7 in the STLC is either

META-THEORY 9

I'hkoe:T (Term Typing)
x:7) €l
——— TMTRUE ——+———— TMFALSE — TMVAR
'k, true : Bool I' ks, false : Bool 'k x:71
x ¢ dom(T)
Nx:mhkoe: I'koei:m1 — I'koes:m
! 2 TMABS L 2 21 TMAPP
Pho Mz :m).e:m — T I'k,e1ex:7

Figure 2.3: Typing Rules for the STLC

e u= true| false| Mx:71).e]... Expression
T u= Bool| T — 7 Type
r uw= e|lz:7 Typing Environment

Figure 2.4: Grammar for the STLC, Extension of Figure 2.1

a base type like Bool, or a function type 71 — 7. The typing environment I'
consists of a list of term variables x that may appear free in e. Free variables
are variables that are not introduced by a lambda binder in e, and are thus
available to be substituted. We say that A(z : 7).e binds the variable x in e.
The definitions of these symbols are given in Figure 2.4. Applications e; e; are
typed (TMAPP) by verifying that e; has a function type, and that the type of
es corresponds to the expected argument type of e;. Abstractions A\(z : 7).e
are typed (TMABS) by extending the typing environment I" with the newly
bound variable x and its accompanying type 7. The abstraction itself is then
assigned a function type 71 — 75. Finally, a variable is typed (TMVAR) by
looking up its type in the typing environment I.

2.4 Meta-Theory

While including a static type system has the potential to reduce bugs, generate
boilerplate code, and all-round improve developer productivity, it does come
with an up-front cost. Many programming languages require the programmer
to write type annotations (either on every declaration like in Java, or selectively
like in Haskell), which takes additional development time.

It is thus not unreasonable to demand formal guarantees that the type system
itself is in fact ’correct’, in exchange for the additional effort. This is even more

10 LAYING THE FOUNDATIONS

important in the context of mission critical software, for banks, hospitals, etc.
Defining correctness is not straightforward, and often involves multiple different
correctness properties.

These correctness properties can be proven using the formal specification of the
language, such as the one described in this chapter. Common properties for a
type system include

o progress: Any well-typed expression is either already a value (in our case,
a boolean value or a function), or can be evaluated further. In other
words, its evaluation is not stuck.

o preservation: When a well-typed expression takes an evaluation step, the
resulting expression remains well-typed with the same type.
Commonly investigated properties for a typing algorithm include
e soundness: Any type inferred by the algorithm, is in fact a valid type for
the given expression in the declarative specification of the type system.

o completeness: Any valid type for the declarative specification can also be
derived by the algorithm.

o termination: The type system halts for every possible input program.

Part |

Parametric Polymorphism

11

Chapter 3

Polymorphic Types

"Let W be a classical watch ; a
mustard watch derived from W is
any W’ obtained from W by
adding a certain amount of
mustard in the mechanism."

An integrated approach to time
and food [81]
Jean-Yves Girard

3.1 System F

While the STLC described in Chapter 2 is provably type safe, it is not very
expressive. In fact, the calculus does not support polymorphic functions - the
topic of this thesis - in any form. In order to solve this issue, Girard and
Reynolds [29, 79] created an extension of the STLC with type-level abstraction:
System F.

This extension to the syntax of the language is shown in Figure 3.1. Similarly to
term variables, System F additionally features type variables, which we denote
with a. For System F, we will denote types using o, which feature abstractions
Va.o. Expressions e now support abstracting over a type variable as Aa.e, as
well as instantiating a type variables with a given type in e o.

12

HINDLEY MILNER 13

e == Aael|eo]... Ezpression
o == Bool|al|oy — o2|Va.o Type
r = eo|z:7|la Typing Environment

Figure 3.1: Grammar for System F, Extension of Figure 2.4

Ikyo (Type Well-Formedness)
I
—— TyBooL TyVar
I' 5, Bool T @
'k, o1 'k, o2 Tak, o
TYARROW TYFORALL
'k, 01 = 02 I'k, VYa.o
I'hkae:o (Term Typing)
a¢Tl Tak,e:o I'k, e:Va.o 'k, o1
TMTYABS TMTYAPP
'k, Aa.e : Va.o Ik, eor:[o1/alo

Figure 3.2: Typing Rules for System F, Extension of Figure 2.3

The new typing rules are shown in Figure 3.2. Similarly to term abstractions,
typing a type abstraction (TMTYABS) entails binding the newly declared type
variable a in the typing environment I', and checking the remaining expression
under this extended environment. Correspondingly, type applications provide
a type o with which to substitute the type variable a. Furthermore, as types
now contain variables, a well-formedness relation I' k5, ¢ is included to check
the well-scopedness of variables.

3.2 Hindley Milner

As discussed previously, while static type systems have great potential to
increase programmer productivity, they are not free, and manually writing type
annotations poses a significant up-front cost. Thankfully, this is not always
required. A compiler like GHC can infer most common types by itself. Under
the hood, this type inference process is based on the well-known Hindley-Milner
(HM) algorithm [17]. Type inference requires making a difficult trade-off between
decidability and expressiveness: On one side of the spectrum, type inference for

14 POLYMORPHIC TYPES

e = Azel... Ezpression
T w= Bool |1 — 72 Monotype
o == 7|VYaco Polytype

Figure 3.3: Grammar for HM, Extension of Figure 2.4

IFkoe:o (Term Typing)
x ¢ dom(T) FEier:m =
e:mke:m 'k, n I'kieo:m
TMABS —— TMAPP
Tk Are:m — 7 IFkieiex:m
a¢’l I'k, e:Va.o
I'ak,e: o Tk, 7 x:0)el
—— — TMGEN —— — TMINST TMVAR
I'k, e:Va.o Ik, e:[r/alo I'k.z:0

Figure 3.4: Typing Rules for HM, Extension of Figure 2.3

a language like STLC is trivial, but the language is too limiting to be usable in
practice. On the other side of the spectrum, full type inference for an expressive
language like System F has been proven to be undecidable. This is the main
reason behind the success of the HM algorithm, as it strikes a great balance,
providing decidable inference for a highly expressive language.

Striking this balance thus means making a small restriction on the System F
language. While HM does support type abstraction, it only allows these forall
abstractions on front of the type. Figure 3.3 shows the updated grammar for
the language, which shows this new distinction between types. Polytypes or
type schemes o allow for type abstraction, while monotypes T are the simple
types from Section 2.3.

Figure 3.4 presents a declarative specification of the HM typing system. The
actual type inference algorithm, Algorithm W is out of scope for this text, and
can be found in [59]. Note that this specification is no longer syntax directed,
and allows for generalisation (TMGEN) and instantiation (TMINST) of polytypes
when needed. Also note that, since both function arguments and results are
restricted to monotypes, TMINST might have to applied before rules TMABS and
TMAPP. Type well-formedness operates identically to the System F relation
(Figure 3.2), but is now split in separate relations for monotypes and polytypes.
The relation is omitted due to space constraints.

Chapter 4

Type Instantiation

This idea that there is generality
in the specific is of far-reaching
importance.

Godel, Escher, Bach
Douglas R. Hofstadter

4.1 Introduction

Programmers naturally wish to get the greatest possible utility from their work.
They thus embrace polymorphism: the idea that one function can work with
potentially many types. A simple example is const ::V a b.a — b — a, which
returns its first argument, ignoring its second. The question then becomes:
what concrete types should const work with at a given call site? For example,
if we say const True ’x’, then a compiler needs to figure out that a should
become Bool and b should become Char. The process of taking a type variable
and substituting in a concrete type is called instantiation. Choosing a correct
instantiation is important; for const, the choice of a — Bool means that the
return type of const True *x’ is Bool. A context expecting a different type
would lead to a type error.

In the above example, the choices for a and b in the type of const were inferred.
Haskell, among other languages, also gives programmers the opportunity to
specify the instantiation for these arguments [24]. For example, we might say

15

16 TYPE INSTANTIATION

const @Bool @QChar True ’x’ (choosing the instantiations for both a and b)
or const @Bool True ’x’ (still allowing inference for b). However, once we
start allowing user-directed instantiation, many thorny design issues arise. For
example, will let f = const in f QBool True *x’ be accepted?

Our concerns are rooted in concrete design questions in Haskell, as embodied
by the Glasgow Haskell Compiler (GHC). Specifically, as Haskell increasingly
has features in support of type-level programming, how should its instantiation
behave? Should instantiating a type like Int — V a.a — a yield Int - a — «
(where « is a unification variable), or should instantiation stop at the regular
argument of type /nt, thus resulting in an unchanged type? This is a question of
the depth of instantiation. Suppose now f :: Int — Vv a.a — a. Should f 5 have
type V a.a — a or a — «? This is a question of the eagerness of instantiation.
As we explore in Section 5.1, these questions have real impact on our users.

Unlike much type-system research, our goal is not simply to make a type-safe
and expressive language. Type-safe instantiation is well understood [e.g., 17, 79].
Instead, we wish to examine the stability of a design around instantiation.
Intuitively, a language is stable if small, seemingly-innocuous changes to the
source code of a program do not cause large changes to the program’s behaviour;
we expand on this definition in Section 5.1. We use stability as our metric for
evaluating instantiation schemes in GHC.

Though we apply stability as the mechanism of studying instantiation within
Haskell, we believe our approach is more widely applicable, both to other user-
facing design questions within Haskell and in the context of other languages.

4.2 Instantiation in GHC

Visible type application and variable specificity are fixed attributes of the designs
we are considering.

Visible type application Since GHC 8.0, Haskell has supported visible
instantiation of type variables, based on the order in which those variables
occur [24]. Given const :: ¥V a b.a — b — a, we can write const @Q/nt QBool,
which instantiates the type variables, giving us an expression of type Int —
Bool — Int. If a user wants to visibly instantiate a later type parameter (say,
b) without choosing an earlier one, they can write @_ to skip a parameter. The
expression const @Q_ @Bool has type a — Bool — «, for any type a.

INSTANTIATION IN GHC 17

Specificity FEisenberg et al. [24, Section 3.1] introduce the notion of type
variable specificity. The key idea is that quantified type variables are either
written by the user (these are called specified) or invented by the compiler (these
are called inferred). A specified variable is available for explicit instantiation
using, e.g., @/nt; an inferred variable may not be explicitly instantiated.

To understand the need for this distinction, consider the following Haskell
program

myPair x y = (x,y)

We expect the compiler to infer a polymorphic type, but the programmer never
specified the order of the type variables. Allowing explicit type instantiation for
these compiler infered variables could thus result in fragile and hard to predict
behaviour.

Following GHC, we use braces to denote inferred variables. Thus, if we have
the program

idi::a— a
idy x = x
idy x = x

then we would write that id;::V a. a — a (with a specified a) and id::V {a}. 2 —
a (with an inferred a). Accordingly, id; @QInt is a function of type Int — Int,
while idy @QInt is a type error.

4.2.1 Deep vs. Shallow Instantiation

The first aspect of instantiation we seek to vary is its depth, which type variables
get instantiated. Concretely, shallow instantiation affects only the type variables
bound before any explicit arguments. Deep instantiation, on the other hand,
also instantiates all variables bound after any number of explicit arguments. For
example, consider a function f ::V a.a — (V b. b — b) — ¥V c.c — c. A shallow
instantiation of f’s type instantiates only a, whereas deep instantiation also
affects ¢, despite ¢’s deep binding site. Neither instantiation flavour touches b
however, as b is not an argument of f.

Versions of GHC up to 8.10 perform deep instantiation, as originally introduced
by Peyton Jones et al. [73], but GHC 9.0 changes this design, as proposed by
Peyton Jones [70] and inspired by Serrano et al. [85]. In this chapter, we study
this change through the lens of stability.

18 TYPE INSTANTIATION

4.2.2 Eager vs. Lazy Instantiation

Our work also studies the eagerness of instantiation, which determines
the location in the code where instantiation happens. Eager instantiation
immediately instantiates a polymorphic type variable as soon as it is mentioned.
In contrast, lazy instantiation holds off instantiation as long as possible until
instantiation is necessary in order to, say, allow a variable to be applied to an
argument.

For example, consider these functions:

pair::¥ a.a— VY b.b— (a,b)
pair x y = (x,y)
myPairX x = pair x

What type do we expect to infer for myPairX? With eager instantiation, the
type of a polymorphic expression is instantiated as soon as it occurs. Thus,
pair x will have a type § — («, 8), assuming we have guessed x :: a. (We use
Greek letters to denote unification variables.) With neither « nor 8 constrained,
we will generalise both, and infer V {a} {b}.a — b — (a, b) for myPairX.
Crucially, this type is different than the type of pair.

Let us now replay this process with lazy instantiation. The variable pair has
type V a.a — V b. b — (a, b). In order to apply pair of that type to x, we must
instantiate the first quantified type variable a to a fresh unification variable «,
yielding the type a — V b. b — (a, b). This is indeed a function type, so we can
consume the argument x, yielding pair x ::V b. b — («, b). We have now type-
checked the expression pair x, and thus we take the parameter x into account
and generalise this type to produce the inferred type myPairX ::V {a}.a —
¥V b. b — (a, b). This is the same as the type given for pair, modulo the specificity
of a.

As we have seen, thus, the choice of eager or lazy instantiation can change the
inferred types of definitions. In a language that allows visible instantiation
of type variables, the difference between these types is user-visible. With
lazy instantiation, myPairX True @QChar ’x’ is accepted, whereas with eager
instantiation, it would be rejected.

Chapter 5

Meta Theory: Stability

5.1 Stability

We have described stability as a measure of how small transformations—call
them similarities—in user-written code might drastically change the behaviour
of a program. This section lays out the specific similarities we will consider with
respect to our instantiation flavours. There are naturally many transformations
one might think of applying to a source program. We have chosen ones that
relate best to instantiation; others (e.g. does a function behave differently
in curried form as opposed to uncurried form?) do not distinguish among
our flavours and are thus less interesting in our concrete context. We include
examples demonstrating each of these, showing how instantiation can become
muddled. While these examples are described in terms of types inferred for
definitions that have no top-level signature, many of the examples can easily be
adapted to include a signature. After presenting our formal model of Haskell
instantiation, we check our instantiation flavours against these similarities in
Section 5.3, with proofs in Appendix B.

We must first define what we mean by the “behaviour” of a program. We
consider two different notions of behaviour, both the compile time semantics
of a program (that is, whether the program is accepted and what types are
assigned to its variables) and its runtime semantics (that is, what the program
executes to, assuming it is still well typed). We write, for example, £+£
to denote a similarity that we expect to respect both compile and runtime
semantics. Concretely, this means that applying the transformation preserves

both the type and the resulting value of the expression. Similarly, £ is one

19

20 META THEORY: STABILITY

that we expect only to respect runtime semantics, but may change compile time
semantics. Thirdly, £+ denotes a one-directional similarity that we expect

to respect both compile and runtime semantics.

Similarity 1: Let-Inlining and Extraction

A key concern for us is around let -inlining and -extraction. That is, if we bind

an expression to a new variable and use that variable instead of the original

expression, does our program change meaning? Or if we inline a definition, does

our program change meaning? These notions are captured in Similarity 1:!
let © = ¢ in ex £ [e1/2] e

Example 1: myld The Haskell standard library defines id ::V a.a — a as
the identity function. Suppose we made a synonym of this (using the implicit
top-level let of Haskell files), with the following:

myld = id

Note that there is no type signature. Even in this simple example, our choice
of instantiation eagerness changes the type we infer:

myld ‘ eager ‘ lazy
deep or shallow | V{a}.a—a|Vaa—a

Under eager instantiation, the mention of id is immediately instantiated,
and thus we must re-generalise in order to get a polymorphic type for myld.
Generalising always produces inferred variables, and so the inferred type for
myld starts with V {a}, meaning that myld cannot be a drop-in replacement
for id, which might be used with explicit type instantiation. On the other hand,
lazy instantiation faithfully replicates the type of id and uses it as the type of
myld.

Example 2: myPair This problem gets even worse if the original function has
a non-prenex type, like our pair, above. Our definition is now:

myPair = pair

With this example, both design axes around instantiation matter:

LA language with a strict let construct will observe a runtime difference between a let
binding and its expansion, but this similarity would still hold with respect to type-checking.

STABILITY 21

myPair ‘ eager ‘ lazy
deep vV{a}{b}.a—b—(a,b) | Vaa—Vbb—(ab)
shallow | V{a}.a—=Vb.b— (a,b) | Va.a—Vb.b— (ab)

All we want is to define a simple synonym, and yet reasoning about the types
requires us to consider both depth and eagerness of instantiation.

Example 3: myPairX The myPairX example above acquires a new entangle-
ment once we account for specificity. We define myPairX with this:
myPairX x = pair x

We infer these types:

myPairX ‘ eager ‘ lazy
deep or shallow | V {a} {b}.a— b — (a,b) | V{a}.a—V b.b— (a,b)

Unsurprisingly, the generalised variables end up as inferred, instead of specified.

Similarity 2: Signature Property

The second similarity annotates a let binding with the inferred type o of the
bound expression e;. We expect this similarity to be one-directional, as dropping
a type annotation may indeed change the compile time semantics of a program,
as we hope programmers expect.

fm= e CHR fiofm = e; , where o is the inferred type of f

where f7; = e; denotes a declaration for f, consisting of 7 equations, with
patterns 7; and definitions e;. The syntax is explained in greater detail in
Section 5.2.

Example 4: infer Though not yet implemented, we consider a version of
Haskell that includes the ability to abstract over type variables, the subject of
an approved proposal for GHC [22]. With this addition, we can imagine writing
infer:

infer = X\ @Qa (x :: a) — x

We would infer these types:

22 META THEORY: STABILITY

infer ‘ eager ‘ lazy
deep or shallow | V{a}.a—a|Vaa—a

Note that the eager variant will infer a type containing an inferred quantified
variable {a}. this is because the expression A @Qa (x :: a) — x is instantly
instantiated; it is then let-generalised to get the type in the table above.

If we change our program to include these types as annotations, the eager type,
with its inferred variable, will be rejected. The problem is that we cannot check
an abstraction A @a — ... against an expected type V {a}. ...: the whole point
of having an inferred specificity is to prevent such behaviour, as an inferred
variable should not correspond to either abstractions or applications in the
term.

Similarity 3: Type Signatures

Changing a type signature should not affect runtime semantics—except in the
case of type classes (or other feature that interrupts parametricity). Because our
work elides type classes, we can state this similarity quite generally; more fleshed-
out settings would require a caveat around the lack of type-class constraints.

—_— —_—
frofmi=e é)f?@;fﬂ:ei

Example 5: swizzle Suppose we have this function defined?:

undef ::V a.Int — a— a
undef = undefined

Now, we write a synonym but with a slightly different type:

swizzle:: Int -V a.a— a
swizzle = undef

Shockingly, undef and swizzle have different runtime behaviour: forcing undef
diverges (unsurprisingly), but forcing swizzle has no effect. The reason is that
the definition of swizzle is not as simple as it looks. In the System-F-based
core language used within GHC, we have swizzle = A(n:: Int) — A(a:: Type) —
undef @a n. Accordingly, swizzle is a function, which is already a value3.

2This example is inspired by Peyton Jones [70].

3Similarly to swizzle, the definition of undef gets translated into A(a :: Type) —
undefined @Q(Int — a — a). However, this is not a value as GHC evaluates underneath
the A binder. The evaluation relation can be found in Appendix A.2.

STABILITY 23

Under shallow instantiation, swizzle would simply be rejected, as its type is
different than undef’s. The only way swizzle can be accepted is if it is deeply
skolemised (see Application in Section 5.2), a necessary consequence of deep
instantiation.

swizzle ‘ eager or lazy
deep converges
shallow | rejected

Similarity 4: Pattern-Inlining and Extraction

The fourth similarity represents changing variable patterns (written to the left
of the = in a function definition) into A-binders (written on the right of the =),
and vice versa. Here, we assume the patterns 7 contain only (expression and
type) variables. The three-place wrap relation is unsurprising. It denotes that
wrapping the patterns 7 around the expression e; in lambda binders results in
e}. Tts definition can be found in Appendix A.1.

let 27 = e; in e £ let 2 = ¢} in e

where wrap (T; e1 €])

Example 6: infer2, again Returning to the infer example, we might imagine
moving the abstraction to the left of the =, yielding:

infer2 @Qa (x :: a) = x

Under all instantiation schemes, infer2 will be assigned the type V a.a — a.
Accordingly, under eager instantiation, the choice of whether to bind the
variables before the = or afterwards matters.

Similarity 5: Single vs. Multiple Equations

Our language model includes the ability to define a function by specifying
multiple equations. The type inference algorithm in GHC differentiates between
single and multiple equation declarations (see Section 5.3), and we do not want
this distinction to affect types. While normally new equations for a function
would vary the patterns compared to existing equations, we simply repeat the
existing equation twice; after all, the particular choice of (well-typed) pattern
should not affect compile time semantics at all.

fr=e& fr=efT=c¢

24 META THEORY: STABILITY

Example 7: wunitld1 and unitld2 Consider these two definitions:

unitld1 () = id
unitld2 () = id
unitld2 () = id

Both of these functions ignore their input and return the polymorphic identity
function. Let us look at their types:

| eager | lazy
unitldl deep or shallow | V{a}.() 2>a—a | ()=>Vaa—a
unitld2 deep or shallow | V{a}.() —»a—a | V{a}.() 2 a—a

The lazy case for UnitldI is the odd one out: we see that the definition of
unitldl has type V a.a — a, do not instantiate it, and then prepend the ()
parameter. In the eager case, we see that both definitions instantiate id and
then re-generalise.

However, the most interesting case is the treatment of wunit/d2 under lazy
instantiation. The reason the type of unitld2 here differs from that of unitldl
is that the pattern-match forces the instantiation of id. As each branch of a
multiple-branch pattern-match must result in the same type, we have to seek
the most general type that is still less general than each branch’s type. Pattern
matching thus performs an instantiation step (regardless of eagerness), in order
to find this common type.

In the scenario of unitld2, however, this causes trouble: the match instantiates
id, and then the type of unitld2 is re-generalised. This causes unitld2 to have a
different inferred type than wunitld1, leading to an instability.

Similarity 6: 7-Expansion

And lastly, we want n-expansion not to affect types. (This change can reasonably
affect runtime behaviour, so we would never want to assert that n-expansion
maintains runtime semantics.)

e & Azr.ex, where e has a function type

Example 8: eta Consider these two definitions, where id :: V a.a — a:

noEta = id
eta = MAx—idx

STABILITY 25

where we take x to be an unused variable. The two right-hand sides should
have identical meaning, as eta is simply the n-expansion of noEta. Yet, under
lazy instantiation, these two will have different types:

| eager | lazy
noEta deep or shallow | V{a}l.a—a | Vaa—a
eta deep or shallow | V{a}.a—a | V{a}l.a—a

The problem is that the nm-expansion instantiates the occurrence of id in
eta, despite the lazy instantiation strategy. Under eager instantiation, the
instantiation happens regardless.

5.1.1 Stability

The examples in this section show that the choice of instantiation scheme
matters—and that no individual choice is clearly the best. To summarise, each
of our possible schemes runs into trouble with some example; this table lists
the numbers of the examples that witness a problem:

‘ ager ‘
deep 1,2,3,4,5,6
shallow | 1,2, 3,4, 6

@
—

azy
) 77 8
8

)

~ Ot

9

At this point, the best choice is unclear. Indeed, these examples are essentially
where we started our exploration of this issue—with failures in each quadrant
of this table, how should we design instantiation in GHC?

To understand this better, Section 5.2 presents a formalisation of GHC’s type-
checking algorithm, parameterised over the choice of depth and eagerness.
Section 5.3 then presents properties derived from the similarities of this
section and checks which variants of our type system uphold which properties.
The conclusion becomes clear: lazy, shallow instantiation respects the most
similarities.

We now fix the definition of stability we will work toward in this chapter:
Definition (Stability). A language is considered stable when all of the program

similarities above are respected.

We note here that the idea of judging a language by its robustness in the face of
small transformations is not new; see, for example, Le Botlan and Rémy [53] or

26 META THEORY: STABILITY
) = §|D Depth
€ = &L Eagerness
T = a|lnmn—>n|TT Monotype
p = 7|lo—¢° Instantiated type
o = p|Vao|V{a}.o |0 = 02 Type scheme
= p (6=D) |o (6=S8) Instantiated result
ne = p (e=&) |o (e=L) Synthesised type
e = harg | Az.e | Aa.e|let decl in e Expression
h = z|Kl|e:o|e Application head
arg == el Qo Application argument
decl == x:0;27; = e | 27, = e Declaration
™ = 2| K7|Qo Pattern
b)) = o|X,Ta|X, K :a0;T Static context
A= Y |Tz:0]|T,a Context
P = 7|Qa Argument descriptor

Figure 5.1: Mixed Polymorphic A-Calculus (MPLC) Syntax

Schrijvers et al. [83], who also consider a similar property. However, we believe
ours is the first work to focus on it as the primary criterion of evaluation.

Our goal in this work is not to eliminate instability, which would likely be too
limiting, leaving us potentially with either the Hindley-Milner implicit type
system or a System F explicit one. Both are unsatisfactory. Instead, our goal is
to make the consideration of stability a key guiding principle in language design.
The rest of this chapter uses the lens of stability to examine design choices
around ordered explicit type instantiation. We hope that this treatment serves
as an exemplar for other language design tasks and provides a way to translate
vague notions of an “intuitive” design into concrete language properties that
can be proved or disproved. Furthermore, we believe that instantiation is an
interesting subject of study, as any language with polymorphism must consider
these issues, making them less esoteric than they might first appear.

5.2 The Mixed Polymorphic \-Calculus

In order to assess the stability of our different designs, this section develops a
polymorphic, stratified A-calculus with both implicit and explicit polymorphism.
We call it the Mixed Polymorphic A-calculus, or MPLC. Our formalisation
(based on Eisenberg et al. [24] and Serrano et al. [85]) features explicit type

THE MIXED POLYMORPHIC A-CALCULUS 27

instantiation and abstraction, as well as type variable specificity. In order
to support visible type application, even when instantiating eagerly, we must
consider all the arguments to a function before doing our instantiation, lest
some arguments be type arguments. Furthermore, type signatures are allowed
in the calculus, and the bidirectional type system [76] permits higher-rank [64]
functions. Some other features, such as local let declarations defining functions
with multiple equations, are added to support some of the similarities we wish
to study.

We have built this system to support flexibility in both of our axes of instantiation
scheme design. That is, the calculus is parameterised over choices of instantiation
depth and eagerness. In this way, our calculus is essentially a family of type
systems: choose your design, and you can instantiate our rules accordingly.

5.2.1 Syntax

The syntax for MPLC is shown in Figure 5.1. We define two meta parameters
¢ and € denoting the depth and eagerness of instantiation respectively. In the
remainder of this chapter, grammar and relations which are affected by one of
these parameters will be annotated as such. A good example of this are types
¢ and 7, as explained below.

Keeping all the moving pieces straight can be challenging. We thus offer
some mnemonics to help the reader: In the remainder of the chapter, aspects
pertaining to eager instantiation are highlighted in emerald, while lazy features
are highlighted in lavender. Similarly, instantiation under the shallow scheme

. inst
is drawn using a striped line, as in I' - o .5,).

Types Our presentation of the MPLC contains several different type categories,
used to constrain type inference. Monotypes 7 represent simple ground types
without any polymorphism, while type schemes ¢ can be polymorphic, including
under arrows. In contrast, instantiated types p cannot have any top-level
polymorphism. However, depending on the depth ¢ of instantiation, a p-type
may or may not feature nested foralls on the right of function arrows. This
dependency on the depth ¢ of type instantiation is denoted using an instantiated
result type ¢° on the right of the function arrow. Instantiating shallowly, ¢°
is a type scheme o, but deep instantiation sees ¢* as an instantiated type p.
This makes sense: Int — Va.a — a s a fully instantiated type under shallow
instantiation, but not under deep. We also have synthesised types 1 to denote
the output of the type synthesis judgement I' F e = ¢, which infers a type
from an expression. The shape of this type depends on the eagerness e of

28 META THEORY: STABILITY

type instantiation: under lazy instantiation (L), inference can produce full
type schemes o; but under eager instantiation (&), synthesised types n¢ are
always instantiated types p: any top-level quantified variable would have been
instantiated away.

Finally, an argument descriptor ¥ represents a type synthesised from analysing
a function argument pattern. Descriptors are assembled into type schemes o
with the type (¢; 09 o) judgement, in Figure 5.5.

Expressions Expressions e are mostly standard; we explain the less common
forms here.

As inspired by Serrano et al. [85], applications are modelled as applying a
head h to a (maximally long) list of arguments arg. The main idea is that
under eager instantiation, type instantiation for the head is postponed until
it has been applied to its arguments. A head h is thus defined to be either a
variable z, a data constructor K, an annotated expression e : o or a simple
expression e. This last form will not be typed with a type scheme under eager
instantiation—that is, we will not be able to use explicit instantiation—but is
required to enable application of a lambda expression. As we feature both term
and type application, an argument arg is defined to be either an expression e
or a type argument Qg.

Our syntax additionally includes explicit abstractions over type variables, written
with A. Though the design of this feature (inspired by Eisenberg et al. [25,
Appendix B]) is straightforward in our system, its inclusion drives some of the
challenge of maintaining stability.

Lastly, let -expressions are modelled on the syntax of Haskell. These contain
a single (non-recursive) declaration decl, which may optionally have a type
signature z : o, followed by the definition z7; = ¢; . The patterns 7 on the left
of the equals sign can each be either a simple variable z, type @Qo or a saturated
data constructor K 7.

Contexts Typing contexts I' are entirely standard, storing both the term
variables x with their types and the type variables a in scope; these type
variables may appear in both terms (as the calculus features explicit type
application) and types. The type constructors and data constructors are stored
in a static context X, which forms the basis of typing contexts I'. This static
context contains the data type definitions by storing both type constructors
T @ and data constructors K : @;5; T. Data constructor types contain the list
of quantified variables @, the argument types @, and the resulting type T'; when

THE MIXED POLYMORPHIC A-CALCULUS 29

Fig. 52 Tk e=n° Synthesise type n¢ for e

Fig. 52 Tke<«o Check e against type o

Fig. 5.2 TF{h=o Synthesise type o for head h

Fig. 5.2 T FAa@rg < 0 = o' Check arg against o, resulting in type o’
Fig. 5.3 Tk decl =T’ Extend context with a decl.

Fig. 54 THF’ 7= y;A Synthesise types 1 for patterns 7,

binding context A
Fig. 54 T F’ 7 < o= 0¢';A Check 7 against o, with
residual type ¢’, binding A
Fig. 5.5 T'Fo st p Instantiate o to p
Fig. 5.5 T F g skold, ». 17 Skolemise ¢ to p, binding I
App. Al binders‘s(a) =a;p Extract type var. binders @
and residual p from o
App. A1 wrap (T; e1 e3) Bind patterns 7 in e; to get ey

Table 5.1: Relation Overview

K :@;5; T, then the use of K in an expression would have type Va.cd — T @,
abusing syntax slightly to write a list of types @ to the left of an arrow.

5.2.2 Type system overview

Table 5.1 provides a high-level overview of the different typing judgements for
the MPLC. The detailed rules can be found in Figures 5.2-5.5. The starting
place to understand our rules is in Figure 5.2. These judgements implement a
bidirectional type system, fairly standard with the exception of their treatment
of a list of arguments all at once?.

Understanding this aspect of the system hinges on rule TM-INFAPP, which
synthesises the type of the head h and uses its type to check the arguments
arg. The argument-checking judgement I' F* @rg < ¢ = ¢’ (inspired by
Dunfield and Krishnaswami [21]) uses the function’s type o to learn what type
is expected of each argument; after checking all arguments, the judgement
produces a residual type ¢’. The judgement’s rules walk down the list, checking
term arguments (rule ARG-APP), implicitly instantiating specified variables
where necessary (rule ARG-INST, which spots a term-level argument e but does
not consume it), uses type arguments for instantiation (rule ARG-TYAPP), and
eagerly instantiates inferred type arguments (rule ARG-INFINST).

4This is a well-known technique to reduce the number of traversals through the applications,
known as spine form [14].

30

META THEORY: STABILITY

H-VAR
z:0 €T

Tt 2 =¢

TM-INFABS
Fz:mEFe=n5

H-Con
K:a;5; T el

' K =vas— Ta

H-InF
T'Fe=ne

I e = pf

TM-INFAPP
rrfh=o
It arg<o=o
= 0_/ inst & ”e

'Xze=m —n

TM-CHECKABS

I',z:01Fe<=o9

I'F harg = n°

TM-INFTYABS
Iiake=n

I'FVYan st ns
'+ Aa.e = n5

TM-CHECKLET
't decl =T
INFe<so

I'FAz.e<so

I'let decl in e < o

Tm-CHECKTYABS

o=V{a}Va.o

Ia,alke<o
I'FAae<=o

(Head Type Synthesis)

H-ANN
I'Fe<o

Tt e:o0=0

(Term Type Synthesis)

TM-INFLET
'k decl =T’

I'Fe=n*

'k let decl in e = n°

(Term Type Checking)

TM-CHECKINF
I'Fo skol & p’Fl
MFe=n
]w] -]/F inst & p
e#£ \NA, let
I'Fe<o

Figure 5.2: Term Typing for Mixed Polymorphic A-Calculus

THE MIXED POLYMORPHIC A-CALCULUS 31

A arg <o =o' (Argument Type Checking)
ARrG-Aprp
I'ke<oy
ARG-EMPTY A TG < 0y = 0
re<=o=o0 I+ e,arg < o1 — 09 = 0’
ARG-INST
ARG-TYAPP [HA e,arg < ol = 03
I+ @rg < [01/a] 02 = 03 oby = [r1/a] o2
I+ Qoy,arg < Va.00 = o3 [+ e,arg < Va.oo = o3

ARG-INFINST
o=V{a}.oq

I A arg < o) = o3
ob=[r/a] oy

I arg < o= o3

I'F decl = T (Declaration Checking)

DECL-NOANNMULTI)
— J
ji>1 F"Pﬁj?’(/};Aj

DECL-NOANNSINGLE TAFe = ne’
T 7 = ;A DG
[,AF e=nf DA E s 80 o type (Y5 p o)
type (v;n° o) a=fv(o)\ dom (') a=1fv(o)\dom (') o' =V{a}.o
Ttaer=e=T,2:V{a}.o P77 =¢ =T,z:0
DECL-ANN

P = AL 7
PPy o=0;40;7 IAjF e <o)

]
'tz:oyzmj=¢" =1,2:0

Figure 5.3: Argument and Declaration Typing for Mixed Polymorphic A-Calculus

32 META THEORY: STABILITY

7= A (Pattern Synthesis)
PAT-INFVAR
PAT-INFEMPTY TF’ T EP o= % A
' e = o0 Pr e, m=m, 01, A

PAT-INFCON
K :ay;00; T €T

I 7 < (01,70 /0] (G0 = Tag) = T7; 4 PAT-INFTYVAR
DA FP 7 =4 Ay LaFP 7= ;A
I' P (K@, 7),7@ = T7,; A1, Ay [P Qa, 7 = Qa,¢;a, A
‘F FP 7 <=o0=0;A ‘ (Pattern Checking)

PAT-CHECK VAR

PAT-CHECKEMPTY T,2:0 P o o oy = cr';A

It e<=o=o0;e It e 7<o s0o=02:01,A

PAT-CHECKCON

K:ay;00; T €T Throp ™o, PAT-CHECKFORALL
kaﬁﬁ[ﬁl,?g/ao](ﬁoﬁTao):>p1;A1 F,CLFP?<:O'Z>OJ;A
DA P 7 =0y = 0b; Ay T # - and T # Qo, 7
I HP (KQ7F, 7),7 < 01 — 02 = 0h; A1, Ay I'7#<vao=o'"aA
PAT-CHECKTYVAR PAT-CHECKINFFORALL
T,abP 7 < [a/b)oy = 023 A laFl7<o=0 ;A T+#-
I' -7 Qa, 7 < Vb.oy = 09;a,A "7 <v{alo=oaA

Figure 5.4: Pattern Typing for Mixed Polymorphic A-Calculus

THE MIXED POLYMORPHIC A-CALCULUS 33

| N (Type instantiation)

INST-INST
binders (o) = a; p

I'Fo to7/a]p

[k o skl o1V (Type skolemisation)

SKOL-SKOL
binders’ (o) = a; p
I'bko skld 5T a

type (1; 0 o) (Telescope Type Construction)
TYPE-VAR TyPE-TYVAR
Tvpe-EMpTy type (; o2 05) type (;0 o)
type (850 o) type (T1,; 09 71 — 0%) type (Qa, ;0 Va.o')

Figure 5.5: Type Instantiation and Skolemisation

Our type system also includes let -declarations, which allow for the definition of
functions, with or without type signatures, and supporting multiple equations
defined by pattern-matching. Checking declarations and dealing with patterns
is accomplished by the judgements in Figures 5.3 and 5.4, respectively, although
the details may be skipped on a first reading: we include these rules for
completeness and as the basis of our stability-oriented evaluation (Section 5.3).
These rules do not directly offer insight into our treatment of instantiation.

Instead, the interesting aspects of our formulation are in the instantiation and
skolemisation judgements.

5.2.3 Instantiation and Skolemisation

When we are type-checking the application of a polymorphic function, we
must instantiate its type variables: this changes a function id ::V a.a — a
into id :: 7 — 7, where 7 is any monotype. On the other hand, when we are
type-checking the body of a polymorphic definition, we must skolemise its type

34 META THEORY: STABILITY

variables: this changes a definition (Ax — x) 1V a.a — a so that we assign
x to have type a, where a is a skolem constant—a fresh type, unequal to any
other. These constants are bound in the context returned from the skolemisation
judgement.

Naturally, the behaviour of both instantiation and skolemisation depend on the
instantiation depth; see Figure 5.5. Both rule INST-INST and rule SKOL-SKOL
use the binders helper function: bindersé(o) = a; p extracts out bound type
variables @ and a residual type p from a polytype o. The depth, though, is key:
the shallow (S) version of our type system, binders gathers only type variables
bound at the top, while the deep (D) version looks to the right past arrows.
As examples, we have binders‘s(Va.a = Vbbb — b) = a;a — Vbb — b and
binders® (Y a.a — Yb.b — b) = a,b;a — b — b. The full definition (inspired by
Peyton Jones et al. [73, Section 4.6.2]) is in Appendix A.1.

Some usages of these relations happen only for certain choices of instantiation
flavour. For example, see rule TM-INFAPP. We see the last premise
instantiates the result of the application—but its emerald colour tells us that
this instantiation happens only under the eager flavour®. Indeed, this particular
use of instantiation is the essence of eager instantiation: even after a function has
been applied to all of its arguments, the eager scheme continues to instantiate.
Similarly, rule TM-INFTYABS instantiates eagerly in the eager flavour.

The lazy counterpart to the eager instantiation in rule TM-INFAPP is the
instantiation in rule TM-CHECKINF. This rule is the catch-all case in the
checking judgement, and it is used when we are checking an application against
an expected type, as in the expression f a b ¢:: T Int Bool. In this example, if
f a b c still has a polymorphic type, then we will need to instantiate it in order
to check the type against the monomorphic T /nt Bool. This extra instantiation
would always be redundant in the eager flavour (the application is instantiated
eagerly when inferring its type) but is vital in the lazy flavour.

Several other rules interact with instantiation in interesting ways:

A-expressions Rule TM-CHECKABS checks a A-expression against an expected
type o. However, this expected type may be a polytype. We thus must first
skolemise it, revealing a function type o7 — o9 underneath (if this is not
possible, type checking fails). In order to support explicit type abstraction
inside a lambda binder Az.Aa.e, rule TM-CHECKABS never skolemises under an
arrow: note the fixed S visible in the rule. As an example, this is necessary in

5We can also spot this fact by examining the metavariables. Instantiation takes us from
a o-type to a p-type, but the result in rule TM-INFAPP is a n°-type: a p-type in the eager
flavour, but a o-type in the lazy flavour.

EVALUATION 35

order to accept (Ax @b (y :: b) — y) =V a.a — V b. b — b, where it would be
disastrous to deeply skolemise the expected type when examining the outer A.

Declarations without a type annotation Rule DECL-NOANNMULTI is used
for synthesising a type for a multiple-equation function definition that is not
given a type signature. When we have multiple equations for a function, we
might imagine synthesising different polytypes for each equation. We could then
imagine trying to find some type that each equation’s type could instantiate
to, while still retaining as much polymorphism as possible. This would seem
to be hard for users to predict, and hard for a compiler to implement. Our
type system here follows GHC in instantiating the types of all equations to
be a monotype, which is then re-generalised. This extra instantiation is not
necessary under eager instantiation, which is why it is coloured in lavender.

For a single equation (rule DECL-NOANNSINGLE), synthesising the original
polytype, without instantiation and regeneralisation is straightforward, and so
that is what we do (also following GHC).

5.3 Evaluation

This section evaluates the impact of the type instantiation flavour on the stability
of the programming language. To this end, we define a set of eleven properties,
based on the informal definition of stability from Section 5.1. Every property is
analysed against the four instantiation flavours, the results of which are shown
in Table 5.2, which also references the proof appendix for each of the properties,
in the column labeled App.

We do not investigate the type safety of our formalism, as the MPLC is a subset
of System F. We can thus be confident that programs in our language can be
assigned a sensible runtime semantics without going wrong.

5.3.1 Contextual Equivalence

Following the approach of GHC, rather than providing an operational semantics
of our type system directly, we instead define an elaboration of the surface
language presented in this chapter to explicit System F, our core language.
It is important to remark that elaborating deep instantiation into this core
language involves semantics-changing n-expansion. This allows us to understand
the behaviour of Example 5, swizzle, which demonstrates a change in runtime

36 META THEORY: STABILITY

£ L
Sim. | Property Phase | App. | S | D | S | D
1 1 Let inlining C | B.1 SR arani
2 Let extraction C | B.1 X1 X |V |V
3 R | B3 VI X | VX
2 4 Signature prop. C X | X | X | KX
4b restricted B.4 X| X |V |V
5 R | B4 VI X | VX
3 6 Type signatures R | B4 I X VX
4 7 Pattern inlining C | B5 X1 x| v |V
8 R | B.5 S0 X |V
9 Pattern extraction C | B5 X| x|/ |V
5 10 Single/multi C|B6 |V |V |X]|X
6 11 m-expansion C X | X | X | X
11b restricted B.7 X |V | X | X

Table 5.2: Property Overview

semantics arising from a type signature. This change is caused by n-expansion,
observable only in the core language.

The definition of this core language and the elaboration from MPLC to core
are in Appendix A.2. The meta variable e refers to core terms, and ~+ denotes
elaboration. In the core language, n-expansion is expressed through the use of
an expression wrapper ¢, an expression with a hole, which retypes the expression
that gets filled in. The full details can be found in Appendix A.2. We now
provide an intuitive definition of contextual equivalence in order to describe
what it means for runtime semantics to remain unchanged.

Definition 1 (Contextual Equivalence). Two core expressions ey and ey are
contextually equivalent, written e; >~ eo, if there does not exist a context that
can distinguish them. That is, e and es behave identically in all contexts.

Here, we understand a context to be a core expression with a hole, similar to
an expression wrapper, which instantiates the free variables of the expression
that gets filled in. More concretely, the expression built by inserting e; and e
to the context should either both evaluate to the same value, or both diverge.
A formal definition of contextual equivalence can be found in Appendix B.2.

EVALUATION 37

5.3.2 Properties

let -inlining and extraction We begin by analysing Similarity 1, which expands
to the three properties described in this subsection.

Property 1 (Let Inlining is Type Preserving).

e T'hletz=einea=n° DIk lei/z]ea=1n°
e ThHletz=¢e ines <=0 DT F[e/z]ea <=0

Property 2 (Let Extraction is Type Preserving).

e T'Fle/zlea=n5 AN TFe=nDI'Fletx=e in e =15
e T'Hle/z]ea=09 ANThe=nDTFletz=¢e in ey <02

Property 3 (Let Inlining is Runtime Semantics Preserving).

e ThHletz=e inea=n"~eg A TF[er/a]ea =0~ ea Dep~ey

e I'Fletz=egines<=oc~er AN TFHle/zlea<=0~ea Dep ey

As an example for why Property 2 does not hold under eager instantiation,
consider id @Int. Extracting the id function into a new let -binder fails to type
check, because id will be instantiated and then re-generalised. This means that
explicit type instantiation can no longer work on the extracted definition.

The runtime semantics properties (both these and later ones) struggle under
deep instantiation. This is demonstrated by Example 5, swizzle, where we see
that non-prenex quantification can cause n-expansion during elaboration and
thus change runtime semantics.

Signature Property Similarity 2 gives rise to these properties about signatures.

Property 4 (Signature Property is Type Preserving).

F'Fa2mi=¢ =0V ANz :0 e IVDlbka:oami=¢ =1

As an example of how this goes wrong under eager instantiation, consider the
definition z = Aa.Ay.(y : @). Annotating x with its inferred type V{a}.a — a is
rejected, because rule TM-CHECKTYABS requires a specified quantified variable,
not an inferred one.

38 META THEORY: STABILITY

However, similarly to eager evaluation, even lazy instantiation needs to
instantiate the types at some point. In order to type a multi-equation declaration,
a single type needs to be constructed that subsumes the types of every branch.
In our type system, rule DECL-NOANNMULTI simplifies this process by first
instantiating every branch type (following the example set by GHC), thus
breaking Property 4. We thus introduce a simplified version of this property,
limited to single equation declarations. This raises a possible avenue of future
work: parameterising the type system over the handling of multi-equation
declarations.

Property 4b (Signature Property is Type Preserving (Single Equation)).
Ftaem=e=>0" ANz :0 €' DThz:0;zT=e=>1T"

Property 5 (Signature Property is Runtime Semantics Preserving).

—
Ftami=¢ =T ~z:0=¢
1
ANDlkFz:o2T;=¢ =1 ~xz:0=€ D e ~ey

Type Signatures Similarity 3 gives rise to the following property about runtime
semantics.

Property 6 (Type Signatures are Runtime Semantics Preserving).
Fl—:czal;mizkflwx:m:el

AThka:iogzmi=¢ =T1~2:00=e

A F}—glins—t%pwh A F}—agim—t‘;)pwz'fg

O tler] = tafes]

Consider let z : Va.Int — a — a;z = undefined in = ‘e,* (), which diverges.
Yet under deep instantiation, this version terminates: let z : Int — Va.a —
a; = undefined in z ‘e, (). Under shallow instantiation, the second program is
rejected, because undefined cannot be instantiated to the type Int — Va.a — a,
as that would be impredicative. You can find the typing rules for undefined
and eq in Appendix A.2.1.

Pattern Inlining and Extraction The properties in this section come from
Similarity 4. Like in that similarity, we assume that the patterns are just
variables (either implicit type variables or explicit term variables).

Property 7 (Pattern Inlining is Type Preserving).
Fkam=e =T A wrap(T;e1 €3) D Thz=e =T

The failure of pattern inlining under eager instantiation will feel similar: if
we take id@Qa © = x : a, we will infer a type Va.a — a. Yet if we write

EVALUATION 39

id = Aa.Az.(z : a), then eager instantiation will give us the different type
V{a}.a — a.

Property 8 (Pattern Inlining / Extraction is Runtime Semantics Preserving).
FFezm=e =T ~2x:0=e A wrap(T;e; e2)
ANlTFz=e=>I"~z:0=¢ D e ~ey

Property 9 (Pattern Extraction is Type Preserving).
FFae=e=T" A wrap(T;e1 e3) D 'tazT=¢ =T"

Single vs. multiple equations Similarity 5 says that there should be no
observable change between the case for a single equation and multiple
(redundant) equations with the same right-hand side. That gets formulated into
the following property.

Property 10 (Single/multiple Equations is Type Preserving).
'trzr=e=>T2:0 DTFtaT=caom=ec=1T'

This property favours the otherwise-unloved eager flavour. Imagine f _ = pair.
Under eager instantiation, this definition is accepted as type synthesis produces
an instantiated type. Yet if we simply duplicate this equation under lazy
instantiation (realistic scenarios would vary the patterns on the left-hand side,
but duplication is simpler to state and addresses the property we want), then
rule DECL-NOANNMULTI will reject as it requires the type to be instantiated.

n-expansion Similarity 6 leads to the following property.

Property 11 (n-expansion is Type Preserving).

e T'Fe=n° A numargs(n®) =n DO T'kAT".eT" = n°
e TFe<o A numargs(p)=n D T'EAXT".eT" <0

Here, 7" represents n variables. We use numargs(c) to count the number of
explicit arguments an expression can take, possibly instantiating any intervening
implicit arguments. A formal definition can be found in Figure B.2 in the
appendix. However, in synthesis mode this property fails for every flavour: n¢
might be a function type o1 — o2 taking a type scheme o7 as an argument,
while we only synthesise monotype arguments. We thus introduce a restricted
version of Property 11, with the additional premise that 1 can not contain any
binders to the left of an arrow.

Property 11b (n-expansion is Type Preserving (Monotype Restriction)).

40 META THEORY: STABILITY

. FF@:}nE A numargs(nﬁ):n A FFUC inst & .
S TR AT".eT" = 1
e T'Fe<=o A numargs(p) =n D TH AT .eT" <0

This (restricted) property fails for all but the eager/deep flavour as n-expansion
forces other flavours to instantiate arguments they otherwise would not have.

5.3.3 Conclusion

A brief inspection of Table 5.2 suggests how we should proceed: choose lazy,
shallow instantiation. While this configuration does not respect all properties,
it is the clear winner—even more so when we consider that Property 11b (one
of only two that favour another mode) must be artificially restricted in order
for any of our flavours to support the property.

We should note here that we authors were surprised by this result. This work
arose from the practical challenge of designing instantiation in GHC. After
considerable debate among the authors of GHC, we were unable to remain
comfortable with any one decision—as we see here, no choice is perfect, and so
any suggestion was met with counter-examples showing how that suggestion
was incorrect. Yet we had a hunch that eager instantiation was the right
design. We thus formulated the similarities of Section 5.1 and went about
building a formalisation and proving properties. Crucially, we did not select
the similarities to favour a particular result, though we did choose to avoid
reasonable similarities that would not show any difference between instantiation
flavours. At an early stage of this work, we continued to believe that eager
instantiation was superior. It was only through careful analysis, guided by
our proofs and counter-examples, that we realised that lazy instantiation was
winning. We are now convinced by our own analysis.

5.4 Instantiation in GHC

Given the connection between this work and GHC, we now turn to examine
some practicalities of how lazy instantiation might impact the implementation.

5.4.1 Eagerness

GHC used eager instantiation from the beginning, echoing Damas and Milner
[17]. However, the GHC 8 series, which contains support for explicit type

INSTANTIATION IN GHC 41

application, implements an uneasy truce, sometimes using lazy instantiation (as
advocated by Eisenberg et al. [24]), and sometimes eager. In contrast, GHC 9.0
uses eager instantiation everywhere. This change was made for practical reasons:
eager instantiation simplifies the code somewhat. If we went back to using lazy
instantiation, the recent experience in going from lazy to eager suggests we will
have to combat these challenges:

Displaying inferred types The types inferred for functions are more exotic
with lazy instantiation. For example, defining f = A_ — id would infer
f:Vv{a}.a— V b.b — b. These types, which could be reported by tools
(including GHCi), might be confusing for users.

Monomorphism restriction Eager instantiation makes the monomorphism
restriction easier to implement, because relevant constraints are instantiated.

The monomorphism restriction is a peculiarity of Haskell, introduced to avoid
unexpected runtime evaluation®. It potentially applies whenever a variable is
defined without a type annotation and without any arguments to the left of the
=: such a definition is not allowed to infer a type constraint.

Eager instantiation is helpful in implementing the monomorphism restriction,
as the implementation of let-generalisation can look for unsolved constraints
and default the type if necessary. With lazy instantiation, on the other hand,
we would have to infer the type and then make a check to see whether it
is constrained, instantiating it if necessary. Of course, the monomorphism
restriction itself introduces instability in the language (note that plus and (+)
have different types), and so perhaps revisiting this design choice is worthwhile.

Type application with un-annotated variables For simplicity, we want all
variables without type signatures not to work with explicit type instantiation.
([24, Section 3.1] expands on this point.) Eager instantiation accomplishes this,
because variables without type signatures would get their polymorphism via
re-generalisation. On the other hand, lazy instantiation would mean that some
user-written variables might remain in a variable’s type, like in the type of f,
just above.

Yet even with eager instantiation, if instantiation is shallow, we can still get the
possibility of visible type application on un-annotated variables: the specified
variables might simply be hiding under a visible argument. Consider myPair
from Example 2: under eager shallow instantiation, it gets assigned the type

6The full description is in the Haskell Report, Section 4.5.5 [55].

42 META THEORY: STABILITY

V{a}.a—V b.b— (a,b). This allows for visible type application despite the
lack of a signature: myPair True @QChar.

5.4.2 Depth

From the introduction of support for higher-rank types in GHC 6.8, GHC has
done deep instantiation, as outlined by Peyton Jones et al. [73], the paper
describing the higher-rank types feature. However, deep instantiation has never
respected the runtime semantics of a program; Peyton Jones [70] has the details.
In addition, deep instantiation is required in order to support covariance of result
types in the type subsumption judgement ([73, Figure 7]). This subsumption
judgement, though, weakens the ability to do impredicative type inference, as
described by Serrano et al. [84] and Serrano et al. [85]. GHC has thus, for
GHC 9.0, changed to use shallow subsumption and shallow instantiation.

5.4.3 The situation today: Quick Look impredicativity has
arrived

A recent innovation within GHC (due for release in the next version, GHC 9.2)
is the implementation of the Quick Look algorithm for impredicative type
inference [85]. The design of that algorithm walks a delicate balance between
expressiveness and stability. It introduces new instabilities: for example, if
f x y requires impredicative instantiation, (let unused = 5 in f) x y will fail.
Given that users who opt into impredicative type inference are choosing to
lose stability properties, we deemed it more important to study type inference
without impredicativity in analysing stability. While our formulation of the
inference algorithm is easily integrated with the Quick Look algorithm, we leave
an analysis of the stability of the combination as future work.

5.5 Instabilities around instantiation beyond Haskell

The concept of stability is important in languages that have a mix of implicit and
explicit features—a very common combination, appearing in Coq, Agda, Idris,
modern Haskell, C++4, Java, C#, Scala, F#, and Rust, among others. This
section walks through how a mixing of implicit and explicit features in Idris”
and Agda® causes instability, alongside the features of Haskell we describe in the

"We work with Idris 2, as available from https://github.com/idris-lang/Idris2, at
commit a7d5a9a7fdfbc3e7ee8995a07b90e6a454209cd8.
8We work with Agda 2.6.0.1.

https://github.com/idris-lang/Idris2

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 43

main chapter. We use these languages to show how the issues we describe are
likely going to arise in any language mixing implicit and explicit features—and
how stability is a worthwhile metric in examining these features—mot to critique
these languages in particular.

5.5.1 Explicit Instantiation

Our example languages feature explicit instantiation of implicit arguments,
allowing the programmer to manually instantiate a polymorphic type, for
example. Explicit instantiation broadly comes in two flavours: ordered or
named parameters.

5.5.2 ldris

Idris supports named parameters. If we define const:{a, b: Type} - a— b — a
(this syntax is the Idris equivalent of the Haskell type V a b.a — b — a), then
we can write const { b = Bool} to instantiate only the second type parameter
or const {a = Int} {b = Bool} to instantiate both. Order does not matter;
const {b = Bool} {a = Int} works as well as the previous example. Named
parameters may be easier to read than ordered parameters and are robust to
the addition of new type variables.

Idris’s approach suffers from an instability inherent with named parameters.
Unlike Haskell, the order of quantified variables does not matter. Yet now, the
choice of names of the parameters naturally does matter. Thus const:c — d — ¢
(taking advantage of the possibility of omitting explicit quantification in Idris)
has a different interface than const : a — b — a, despite the fact that the type
variables scope over only the type signature they appear in.

5.56.3 Agda

Agda accepts both ordered and named parameters. After defining const: {a b:
Set} — a — b — a, we can write expressions like const { Int} (instantiating only
a), const { b = Bool}, or const {_} {Bool}. Despite using named parameters,
order does matter: we cannot instantiate earlier parameters after later ones.
Naming is useful for skipping parameters that the user does not wish to
instantiate. Because Agda requires explicit quantification of variables used
in types (except as allowed for in implicit generalisation, below), the ordering
of variables must be fixed by the programmer. However, like Idris, Agda suffers
from the fact that the choice of name of these local variables leaks to clients.

44 META THEORY: STABILITY

5.5.4 Explicit Abstraction

Binding implicit variables in named function definitions If we sometimes
want to explicitly instantiate an implicit argument, we will also sometimes want
to explicitly abstract over an implicit argument. A classic example of why this
is useful is in the replicate function for length-indexed vectors, here written in
Idris:

replicate : {n: Nat} — a— Vectna
replicate {n=27} _ =]
replicate {n =S _} x = x :: replicate x

Because a length-indexed vector Vect includes its length in its type, we need
not always pass the desired length of a vector into the replicate function: type
inference can figure it out. We thus decide here to make the n: Nat parameter
to be implicit, putting it in braces. However, in the definition of replicate, we
must pattern-match on the length to decide what to return. The solution is to
use an explicit pattern, in braces, to match against the argument n.

Idris and Agda both support explicit abstraction in parallel to their support
of explicit instantiation: when writing equations for a function, the user can
use braces to denote the abstraction over an implicit parameter. Idris requires
such parameters to be named, while Agda supports both named and ordered
parameters, just as the languages do for instantiation. The challenges around
stability are the same here as they are for explicit instantiation.

Haskell has no implemented feature analogous to this. Its closest support is that
for scoped type variables, where a type variable introduced in a type signature
becomes available in a function body. For example:

const::Vab.a—b—a
const x y = (x :: a)

The V a b brings a and b into scope both in the type signature and in the
function body. This feature in Haskell means that, like in Idris and Agda,
changing the name of an apparently local variable in a type signature may affect
code beyond that type signature. It also means that the top-level V in a type
signature is treated specially. For example, neither of the following examples
are accepted by GHC:

consty ::V.¥Vab.a—b— a
const; x y = (x:: a)
consty:: (Vab.a— b— a)
consty x y = (x :: a)

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 45

In consty, the vacuous V. (which is, generally, allowed) stops the scoped-type
variables mechanism from bringing a into scope; in consty, the parentheses
around the type serve the same function. Once again, we see how Haskell
is unstable: programmers might reasonably think that syntax like V a b. is
shorthand for V a.V b. or that outermost parentheses would be redundant, yet
neither of these facts is true.

Binding implicit variables in an anonymous function Sometimes, binding a
type variable only in a function declaration is not expressive enough, however—
we might want to do this in an anonymous function in the middle of some other
expression.

Here is a (contrived) example of this in Agda, where > allows for prefix type
annotations:

5 :(A:Set) = A= A

A>x=x

ChurchBool : Sety

ChurchBool = {A:Set} = A—>A— A

churchBoolToBit : ChurchBool — N
churchBoolToBit b=5b10

one : N
one = churchBoolToBit (M A} x1 xa = A3 x1)

Here, we bind the implicit variable A in the argument to churchBoolToBit. (Less
contrived examples are possible; see the Motivation section of Eisenberg [22].)

Binding an implicit variable in a A-expression is subtler than doing it in a
function clause. Idris does not support this feature at all, requiring a named
function to bind an implicit variable. Agda supports this feature, as written
above, but with caveats: the construct only works sometimes. For example, the
following is rejected:

id: {A:Set} > A= A
id=MA} x—> A>x

The fact that this example is rejected, but id {A} x = A 3 x is accepted
is another example of apparent instability—we might naively expect that
writing a function with an explicit A\ and using patterns to the left of an = are
equivalent. Another interesting aspect of binding an implicit variable in a A-
abstraction is that the name of the variable is utterly arbitrary: instead of writing
(MA} x1 xa2 = A 3 x1), we can write (A{anything = A} x1 x2 = A 3 x1).
This is an attempt to use Agda’s support for named implicits, but the name

46 META THEORY: STABILITY

can be, well, anything. This would appear to be a concession to the fact that
the proper name for this variable, A as written in the definition of ChurchBool,
can be arbitrarily far away from the usage of the name, so Agda is liberal in
accepting any replacement for it.

An accepted proposal [22] adds this feature to Haskell, though it has not
been implemented as of this writing. That proposal describes that the feature
would be available only when we are checking a term against a known type,
taking advantage of GHC’s bidirectional type system [24, 73]. One of the
motivations that inspired this work was to figure out whether we could relax
this restriction. After all, it would seem plausible that we should accept a
definition like id = A @a (x :: a) — a without a type signature. (Here, the Qa
syntax binds a to an otherwise-implicit type argument.) It will turn out that,
in the end, we can do this only when we instantiate lazily—see Section 5.3.

5.5.5 Implicit Generalisation

All three languages support some form of implicit generalisation, despite the
fact that the designers of Haskell famously declared that let should not be
generalised [94] and that both Idris and Agda require type signatures on all
declarations.

Haskell Haskell’s let-generalisation is the most active, as type signatures are
optional.? Suppose we have defined const x y = x, without a signature. What
type do we infer? It could be Vab.a—b—aorV baa— b— a This
choice matters, because it affects the meaning of explicit type instantiations. A
natural reaction is to suggest choosing the former inferred type, following the
left-to-right scheme described above. However, in a language with a type system
as rich as Haskell’s, this guideline does not always work. Haskell supports type
synonyms (which can reorder the occurrence of variables), class constraints
(whose ordering is arbitrary) [95], functional dependencies (which mean that a
type variable might be mentioned only in constraints and not in the main body of
a type) [46], and arbitrary type-level computation through type families [15, 23].

9Though not relevant for our analysis, some readers may want the details: Without any
language extensions enabled, all declarations without signatures are generalised, meaning
that defining id x = x will give id the type V a. a — a. With the MonoLocalBinds extension
enabled, which is activated by either of GADTs or TypeFamilies, local definitions that capture
variables from an outer scope are not generalised—this is the effect of the dictum that let
should not be generalised. As an example, the gin f x =let g y = (y,x) in (g ’a’, g True)
is not generalised, because its body mentions the captured x. Accordingly, f is rejected, as
it uses g at two different types (Char and Bool). Adding a type signature to g can fix the
problem.

INSTABILITIES AROUND INSTANTIATION BEYOND HASKELL 47

With all of these features potentially in play, it is unclear how to order the type
variables. Thus, in a concession to language stability, Haskell brutally forbids
explicit type instantiation on any function whose type is inferred; we discuss
the precise mechanism in the next section.

Since GHC 8.0, Haskell allows dependency within type signatures [96], meaning
that the straightforward left-to-right ordering of variables—even in a user-written
type signature—might not be well-scoped. As a simple example, consider
tr :: TypeRep (a:: k), where TypeRep ::V k.k — Type allows runtime type
representation and is part of GHC’s standard library. A naive left-to-right
extraction of type variables would yield V a k. TypeRep (a :: k), which is ill-
scoped when we consider that a depends on k. Instead, we must reorder
to V k a. TypeRep (a:: k). In order to support stability when instantiating
explicitly, GHC thus defines a concrete sorting algorithm, called “ScopedSort”,
that reorders the variables; it has become part of GHC’s user-facing specification.
Any change to this algorithm may break user programs, and it is specified in
GHC’s user manual.

Idris Idris’s support for implicit generalisation is harder to trigger; see
Appendix 5.6 for an example of how to do it. The problem that arises in
Idris is predictable: if the compiler performs the quantification, then it must
choose the name of the quantified type variable. How will clients know what
this name is, necessary in order to instantiate the parameter? They cannot.
Accordingly, in order to support stability, Idris uses a special name for generalised
variables: the variable name itself includes braces (for example, it might be
{k:265}) and thus can never be parsed!?.

Agda Recent versions of Agda support a new variable keyword!!. Here is an
example of it in action:

variable
A: Set
I1 15 : List A

The declaration says that an out-of-scope use of, say, A is a hint to Agda
to implicitly quantify over A: Set. The order of declarations in a variable
block is significant: note that /; and /» depend on A. However, because
explicit instantiation by order is possible in Agda, we must specify the order

10Idris 1 does not use an exotic name, but still prevents explicit instantiation, using a
mechanism similar to Haskell’s specificity mechanism.

See https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-
declared-variables.html in the Agda manual for an description of the feature.

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/glasgow_exts.html#index-20
https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html

48 META THEORY: STABILITY

of quantification when Agda does generalisation. Often, this order is derived
directly from the variable block—but not always. Consider this (contrived)
declaration:

property : length |5 + length |1 = length |1 + length |5

What is the full, elaborated type of property? Note that the two lists /1 and /5
can have different element types A. The Agda manual calls this nested implicit
generalisation, and it specifies an algorithm—similar to GHC’s ScopedSort—to
specify the ordering of variables. Indeed it must offer this specification, as
leaving this part out would lead to instability; that is, it would lead to the
inability for a client of property to know how to order their type instantiations.

5.6 Example of Implicit Generalisation in ldris

It is easy to believe that a language that requires type signatures on all definitions
will not have implicit generalisation. However, Idris does allow generalisation
to creep in, with just the right definitions.

We start with this:

data Proxy : {k: Type} — k — Type where
P: Proxy a

The datatype Proxy here is polymorphic; its one explicit argument can be of
any type.

Now, we define poly:

poly : Proxy a
poly = P

We have not given an explicit type to the type variable a in poly’s type. Because
Proxy’s argument can be of any type, a’s type is unconstrained. Idris generalises
this type, giving poly the type {k: Type} — {a: k} — Proxy a.

At a use site of poly, we must then distinguish between the possibility of
instantiating the user-written a and the possibility of instantiating the compiler-
generated k. This is done by giving the k variable an unusual name, {k:446%}
in our running Idris session.

RELATED WORK 49

5.7 Related Work

The type systems in this work build most directly from Peyton Jones et al. [73],
Eisenberg et al. [24], and Serrano et al. [85]. Each of these papers adds new
capabilities to Haskell, and each also decreases the stability of the language.
While these papers do consider properties we would consider to be components
of stability, stability is not a key criterion in those authors’ evaluation. By
contrast, our work focuses squarely on stability as a believable proxy for the
quality of the user experience.

Many other works on designing type inference algorithms also introduce stability
properties, but these properties exist among others—such as completeness—and
do not seem to guide the design of the algorithm. We do call out one such
work, that by Schrijvers et al. [83], which revolves around implicit programming
systems, and describes a property they call stability. In the context of that
work, stability is about Haskell’s class-instance selection mechanism: we would
like the choice of instance to remain stable under substitutions. That is, if
f::C a= a— Intis called at an argument of type Maybe b (for a type variable
b), the instance selected for C (Maybe b) should be the same as the one that
would be selected if f were called on an argument of type Maybe Int. After all
Maybe b can be substituted to become Maybe Int; perhaps a small change to
the program would indeed cause this substitution, and we would not want a
change in runtime behaviour. Accordingly, the stability property, as used by
Schrijvers et al. [83], is what we would also call a stability property, but it is
much narrower than the definition we give the term.

In comparison to these other papers on type systems and type inference, the
angle of this work is somewhat different: we are not introducing a new language
or type system feature, proving a language type safe, or proving an inference
algorithm sound and complete to its declarative specification. Instead, we
introduce the concept of stability as a new metric for evaluating (new or existing)
type systems, and then apply this metric to a system featuring both implicit
and explicit instantiation. Because of this novel, and somewhat unconventional
topic, we are unable to find further related work.

5.8 Scientific Output

This chapter introduces the concept of stability, and constructs the MPLC to
evaluate the different design decisions discussed in Chapter 4.

The material found in this chapter is largely taken from the following publication:

50 META THEORY: STABILITY

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking
stability by being lazy and shallow: lazy and shallow instantiation
is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell (Haskell 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 85-97.
DOL:https://doi.org/10.1145/3471874.3472985

This work was largely performed while the auther of this thesis was interning
at Tweag, under the supervision of Richard Eisenberg. The contributions of the
different authors are as follows:

e The author of this thesis worked on all aspects of the chapter, including
designing the typing rules, writing all of the proofs, and composing the
text.

¢ Richard Eisenberg organized and guided this project, critiqued the typing
rules, provided GHC/Haskell expertise, and substantially contributed to
writing.

Part 1|

Ad-hoc Polymorphism

Chapter 6

Type Classes

Throughout Part II of this thesis, we will use no less than five different
calculi. As a guide to the reader, we present these languages in
different colours, and thus encourage the reader to view / print this
text in colour. Chapter 6 presents our source language Arc (marked in
blue), with a translation to the target language (marked in).
Chapter 7 introduces a third language Fp, as an intermediate step in
this translation. This language will thus be marked in green. Chapter 8
defines quantified class constraints as a new language extension. We will
mark this extension with a = and by adding a red colour, transforming
Arc into AFo (marked in purple) and Fp into Fy” (marked in red).
These relations are shown in Figure 6.1, where an arrow represents a
translation.

Figure 6.1: Overview of the different calculi of Part II.

52

INTRODUCTION 53

6.1 Introduction

Type classes were initially introduced in Haskell [69] by Wadler and Blott
[95] to make ad-hoc overloading less ad hoc, and they have since become
one of Haskell’s core abstraction features. Moreover, their resounding success
has spread far beyond Haskell: several languages have adopted them (e.g.,
Mercury [35], Coq [87], PureScript [26], Lean [18]), and they have inspired
various alternative language features (e.g., Scala’s implicits [56, 65], Rust’s
traits [62], C++’s concepts [31], Agda’s instance arguments [19]).

Type classes have also received a lot of attention from researchers with
many proposals for extensions and improvements, including functional
dependencies [46], associated types [15], quantified constraints [11] among
other extensions.

As described in the original work by Wadler and Blott [95], this thesis text
employs an indirect, elaboration-based approach for giving meaning to programs
with type classes. Indeed, the meaning of such programs is commonly given in
terms of their translation to a core language [32], like System F, the meaning of
which is defined in the form of an operational semantics. In this translation
process, type classes are elaborated into explicitly passed function dictionaries.

6.2 Overview

This section provides some background on dictionary-passing elaboration of
type class resolution. We then briefly introduce our calculi. Throughout the
section we use Haskell-like syntax as the source language for examples, and to
simplify our informal discussion we use the same syntax without type classes as
the target language.

6.2.1 Dictionary-Passing Elaboration

The dynamic semantics for type classes are not expressed directly but rather by
type-directed elaboration into a simpler language without type classes such as
System F. Thus the dynamic semantics of type classes are given indirectly as
the dynamic semantics of their elaborated forms.

Basic Elaboration. Consider the small program with type classes in Example 1.
We declare a type class Eq and instances for the /Int and pair types. The function

54 TYPE CLASSES

class Eq a where
(==):a— a— Bool
instance Eq Int where
(==) = primEqlnt
instance (Eq a, Eq b) = Eq (a, b) where
(x1,yl)==(x2,y2) = x] ==x2 && yl ==y2
refl :: Eq a = a — Bool
refl x = x==x
main :: Bool
main = refl (5,42)

Example 1: Program with type classes.

refl trivially tests whether an expression is equivalent to itself, which is called
in main.

The dictionary-passing elaboration translates this program into a System F-
like core language that does not feature type classes. The main idea of the
elaboration is to map a type class declaration onto a datatype that contains
the method implementations, a so-called (function) dictionary.

data EqD a = EqD {(==) :: a —» a — Bool }
Then simple instances give rise to dictionary values:

eqint :: EqD Int
eqint = EqD {(==) = primEqInt }

Instances with a non-empty context are translated to functions that take context
dictionaries to the instance dictionary.

eqPair :: (EqD a, EqD b) — Eq (a, b)
eqPair (da,db) =
EqD {(==) = AM(x1,yl) (x2,y2) — (==) da xI1 x2 &&(==) db y1 y2}

Functions with qualified types, like refl, are translated to functions that take
explicit dictionaries as arguments.

refl :: EqD a — a — Bool
refld x = (==) d x x

Finally, calls to functions with a qualified type are mapped to calls that explicitly
pass the appropriate dictionary.

OVERVIEW 55

class Base a where
base :: a — Bool

class Base a = Subl a where
subl :: a — Bool

testl :: Subl a = a — Bool
test]l x = subl x && base x

Example 2: Program with superclasses.

main :: Bool
main = refl (eqPair eqint eqlint) (5, 42)

Elaboration of Superclasses. Superclasses require a small extension to the
above elaboration scheme. Consider the small program in Example 2 where
Subl is a subclass of Base. The function testl has Subl a in the context and
calls subl and base in its definition.

The standard approach to encode superclass is to embed the superclass dictionary
in that of the subclass. For this case, SubID a contains a field superl that
points to the superclass:

data BaseD a = BaseD { base :: a — Bool }
data SublD a = SublD {superl :: BaseD a
,subl :: a — Bool}

This way we can extract the superclass from the subclass when needed. The
function testl is then encoded as:

testl :: Subl a = a — Bool
testl d x = subl d x && base (superl d) x

Resolution. Calls to functions with a qualified type generate type class
constraints. The process for checking whether these constraints can be satisfied,
is known as resolution. For the sake of dictionary-passing elaboration, this
resolution process is augmented with the construction of the appropriate
dictionary that witnesses the satisfiability of the constraint.

56 TYPE CLASSES

6.2.2 Alternatives

Morris [60] presents a specialization-based approach to type Haskell type classes.
Rather than expressing the semantics of the program through elaboration into
a more explicit target language, the paper represents a class as a type-indexed
collection of all its ground instance types. The main advantage of this approach
is that it makes reasoning over classes and properties of the type system easier,
as it avoids a translation step.

However, this work sticks to the classic elaboration-based semantics for type
classes, as it more closely relates to GHC, the de facto Haskell compiler. A
specialization-based approach would likely simplify a proof for coherence of
type class resolution (Chapter 7), as it makes the uniqueness of instances more
explicit. However, an additional proof would have to be included to claim that
this approach is equivalent to the familiar elaboration-based approach.

6.3 Source Language)\1c

This section presents our source language Arc, a basic calculus which only
supports features that are essential for type class resolution.

Consequently, the language is strongly normalizing, and thus does not support
recursive let expressions, mutual recursion or recursive methods. This calculus
will form the basis for a formal proof of coherence of the type class resolution
mechanism in Chapter 7. This is a sensible choice, as recursion does not affect
the fundamentals of the coherence proof. The proof could include recursion
through step indexing [3], a well-known technique, but this would significantly
clutter the proof. Recursion is discussed in more detail in Section 7.6.

Furthermore, two notable design decisions were made in the support of
superclasses in Apc. Firstly, similar to GHC, Arc derives all possible superclass
constraints from their subclass constraints in advance, instead of deriving them
“just-in-time” during resolution. The advantage of this approach is that it
streamlines the actual resolution process.

Secondly, similar to Coq [87] and unlike Wadler